留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肢体保存技术的研究现状及进展

李雨虹, 赵闻雨, 曾力. 肢体保存技术的研究现状及进展[J]. 器官移植, 2023, 14(2): 295-299. doi: 10.3969/j.issn.1674-7445.2023.02.017
引用本文: 李雨虹, 赵闻雨, 曾力. 肢体保存技术的研究现状及进展[J]. 器官移植, 2023, 14(2): 295-299. doi: 10.3969/j.issn.1674-7445.2023.02.017
Li Yuhong, Zhao Wenyu, Zeng Li. Research status and progress on limb preservation technology[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 295-299. doi: 10.3969/j.issn.1674-7445.2023.02.017
Citation: Li Yuhong, Zhao Wenyu, Zeng Li. Research status and progress on limb preservation technology[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 295-299. doi: 10.3969/j.issn.1674-7445.2023.02.017

肢体保存技术的研究现状及进展

doi: 10.3969/j.issn.1674-7445.2023.02.017
基金项目: 

国家自然科学基金面上项目 81770744

详细信息
    作者简介:
    通讯作者:

    曾力,主任医师,研究方向为器官保存和临床肾移植相关研究,E-mail: zengli111109@aliyun.com

  • 中图分类号: R617, R323.7

Research status and progress on limb preservation technology

More Information
  • 摘要: 肢体再植和移植是挽救创伤性肢体离断的首选治疗方法,而安全有效的肢体保存是肢体再植和移植成功的关键。静态低温保存技术是目前肢体保存的金标准,但保存时间较短,已无法满足临床的需要。随着近年来器官保存领域的快速发展,一些新的保存技术如深低温冷冻保存、过冷保存和机械灌注保存等相继出现,但目前这些技术多应用于实体器官的保存,而在包括肢体在内的带血管的复合组织移植移植物保存方面的研究较少。本文就静态低温保存及机械灌注保存在肢体保存中的研究现状及进展进行综述,以期为肢体保存技术的临床应用提供参考,促进肢体再植和移植的发展。

     

  • [1] STOVER G, PRAHLOW N. Residual limb pain: an evidence-based review[J]. NeuroRehabilitation, 2020, 47(3): 315-325. DOI: 10.3233/NRE-208005.
    [2] KURUCAN E, THIRUKUMARAN C, HAMMERT WC. Trends in the management of traumatic upper extremity amputations[J]. J Hand Surg Am, 2020, 45(11): 1086.e1-1086.e11. DOI: 10.1016/j.jhsa.2020.05.006.
    [3] DUBERNARD JM, OWEN E, HERZBERG G, et al. Human hand allograft: report on first 6 months[J]. Lancet, 1999, 353(9161): 1315-1320. DOI: 10.1016/S0140-6736(99)02062-0.
    [4] HAUTZ T, MESSNER F, WEISSENBACHER A, et al. Long-term outcome after hand and forearm transplantation - a retrospective study[J]. Transpl Int, 2020, 33(12): 1762-1778. DOI: 10.1111/tri.13752.
    [5] HE J, KHAN UZ, QING L, et al. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: clinical experience and experimental implications[J]. Front Immunol, 2022, 13: 998952. DOI: 10.3389/fimmu.2022.998952.
    [6] MESSNER F, HAUTZ T, BLUMER MJF, et al. Critical ischemia times and the effect of novel preservation solutions HTK-N and TiProtec on tissues of a vascularized tissue isograft[J]. Transplantation, 2017, 101(9): e301-e310. DOI: 10.1097/TP.0000000000001845.
    [7] GOK E, KUBIAK CA, GUY E, et al. Effect of static cold storage on skeletal muscle after vascularized composite tissue allotransplantation[J]. J Reconstr Microsurg, 2020, 36(1): 9-15. DOI: 10.1055/s-0039-1693455.
    [8] SHANI N, FRIEDMAN O, ARAV A, et al. Cryopreservation and transplantation of vascularized composite transplants: unique challenges and opportunities[J]. Plast Reconstr Surg, 2019, 143(5): 1074e-1080e. DOI: 10.1097/PRS.0000000000005541.
    [9] WHALEY D, DAMYAR K, WITEK RP, et al. Cryopreservation: an overview of principles and cell-specific considerations[J]. Cell Transplant, 2021, 30: 963689721999617. DOI: 10.1177/0963689721999617.
    [10] WANG J, LIN J, PEI Y, et al. Cryopreservation and transplantation of amputated finger[J]. Cryobiology, 2020, 92: 235-240. DOI: 10.1016/j.cryobiol.2020.01.017.
    [11] WILLIAM N, ACKER JP. High sub-zero organ preservation: a paradigm of nature-inspired strategies[J]. Cryobiology, 2021, 102: 15-26. DOI: 10.1016/j.cryobiol.2021.04.002.
    [12] QUE W, HU X, FUJINO M, et al. Prolonged cold ischemia time in mouse heart transplantation using supercooling preservation[J]. Transplantation, 2020, 104(9): 1879-1889. DOI: 10.1097/TP.0000000000003089.
    [13] XU J, BUCHWALD JE, MARTINS PN. Review of current machine perfusion therapeutics for organ preservation[J]. Transplantation, 2020, 104(9): 1792-1803. DOI: 10.1097/TP.0000000000003295.
    [14] GAO J, HE K, XIA Q, et al. Research progress on hepatic machine perfusion[J]. Int J Med Sci, 2021, 18(9): 1953-1959. DOI: 10.7150/ijms.56139.
    [15] KUECKELHAUS M, FISCHER S, SISK G, et al. A mobile extracorporeal extremity salvage system for replantation and transplantation[J]. Ann Plast Surg, 2016, 76(3): 355-360. DOI: 10.1097/SAP.0000000000000681.
    [16] HAUG V, KOLLAR B, ENDO Y, et al. Comparison of acellular solutions for ex-situ perfusion of amputated limbs[J]. Mil Med, 2020, 185(11/12): e2004-e2012. DOI: 10.1093/milmed/usaa160.
    [17] KUECKELHAUS M, DERMIETZEL A, ALHEFZI M, et al. Acellular hypothermic extracorporeal perfusion extends allowable ischemia time in a porcine whole limb replantation model[J]. Plast Reconstr Surg, 2017, 139(4): 922e-932e. DOI: 10.1097/PRS.0000000000003208.
    [18] KREZDORN N, MACLEOD F, TASIGIORGOS S, et al. Twenty-four-hour ex vivo perfusion with acellular solution enables successful replantation of porcine forelimbs[J]. Plast Reconstr Surg, 2019, 144(4): 608e-618e. DOI: 10.1097/PRS.0000000000006084.
    [19] KRUIT AS, BROUWERS K, VAN MIDDEN D, et al. Successful 18-h acellular extracorporeal perfusion and replantation of porcine limbs - histology versus nerve stimulation[J]. Transpl Int, 2021, 34(2): 365-375. DOI: 10.1111/tri.13802.
    [20] HAUG V, KOLLAR B, TASIGIORGOS S, et al. Hypothermic ex situ perfusion of human limbs with acellular solution for 24 hours[J]. Transplantation, 2020, 104(9): e260-e270. DOI: 10.1097/TP.0000000000003221.
    [21] MÜLLER S, CONSTANTINESCU MA, KIERMEIR DM, et al. Ischemia/reperfusion injury of porcine limbs after extracorporeal perfusion[J]. J Surg Res, 2013, 181(1): 170-182. DOI: 10.1016/j.jss.2012.05.088.
    [22] OZER K. Advances in limb preservation: from replantation to transplantation[J]. J Hand Surg Am, 2020, 45(7): 626-637. DOI: 10.1016/j.jhsa.2020.04.006.
    [23] DURAES EFR, MADAJKA M, FRAUTSCHI R, et al. Developing a protocol for normothermic ex-situ limb perfusion[J]. Microsurgery, 2018, 38(2): 185-194. DOI: 10.1002/micr.30252.
    [24] FAHRADYAN V, SAID SA, ORDENANA C, et al. Extended ex vivo normothermic perfusion for preservation of vascularized composite allografts[J]. Artif Organs, 2020, 44(8): 846-855. DOI: 10.1111/aor.13678.
    [25] ROHDE E, GOUDARZI M, MADAJKA M, et al. Metabolic profiling of skeletal muscle during ex-vivo normothermic limb perfusion[J]. Mil Med, 2021, 186(Suppl 1): 358-363. DOI: 10.1093/milmed/usaa268.
    [26] FIGUEROA BA, SAID SA, ORDENANA C, et al. Ex vivo normothermic preservation of amputated limbs with a hemoglobin-based oxygen carrier perfusate[J]. J Trauma Acute Care Surg, 2022, 92(2): 388-397. DOI: 10.1097/TA.0000000000003395.
    [27] CONSTANTINESCU MA, KNALL E, XU X, et al. Preservation of amputated extremities by extracorporeal blood perfusion; a feasibility study in a porcine model[J]. J Surg Res, 2011, 71(1): 291-299. DOI: 10.1016/j.jss.2010.01.040.
    [28] OZER K, ROJAS-PENA A, MENDIAS CL, et al. Ex situ limb perfusion system to extend vascularized composite tissue allograft survival in swine[J]. Transplantation, 2015, 99(10): 2095-2101. DOI: 10.1097/TP.0000000000000756.
    [29] WERNER NL, ALGHANEM F, RAKESTRAW SL, et al. Ex situ perfusion of human limb allografts for 24 hours[J]. Transplantation, 2017, 101(3): e68-e74. DOI: 10.1097/TP.0000000000001500.
    [30] TAEGER CD, LAMBY P, DOLDERER J, et al. Extracorporeal perfusion for salvage of major amputates[J]. Ann Surg, 2019, 270(1): e5-e6. DOI: 10.1097/SLA.0000000000003226.
  • 加载中
图(1)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  121
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回