留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺血预处理在移植肾缺血-再灌注损伤中的应用进展

师朗, 朱杰夫, 吴雄飞. 缺血预处理在移植肾缺血-再灌注损伤中的应用进展[J]. 器官移植, 2022, 13(5): 653-658. doi: 10.3969/j.issn.1674-7445.2022.05.016
引用本文: 师朗, 朱杰夫, 吴雄飞. 缺血预处理在移植肾缺血-再灌注损伤中的应用进展[J]. 器官移植, 2022, 13(5): 653-658. doi: 10.3969/j.issn.1674-7445.2022.05.016
Shi Lang, Zhu Jiefu, Wu Xiongfei. Application progress of ischemic preconditioning in ischemia-reperfusion injury of renal allografts[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 653-658. doi: 10.3969/j.issn.1674-7445.2022.05.016
Citation: Shi Lang, Zhu Jiefu, Wu Xiongfei. Application progress of ischemic preconditioning in ischemia-reperfusion injury of renal allografts[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 653-658. doi: 10.3969/j.issn.1674-7445.2022.05.016

缺血预处理在移植肾缺血-再灌注损伤中的应用进展

doi: 10.3969/j.issn.1674-7445.2022.05.016
基金项目: 

国家自然科学基金 82100803

湖北省自然科学基金 2021CFB101

详细信息
    作者简介:
    通讯作者:

    吴雄飞,博士研究生导师,教授,研究方向为肾缺血-再灌注损伤、肾移植,Email:wuxfei@126.com

  • 中图分类号: R617, R692

Application progress of ischemic preconditioning in ischemia-reperfusion injury of renal allografts

More Information
  • 摘要: 肾移植相对于其他器官移植术后疗效更为显著,但肾缺血-再灌注损伤(IRI)等术后并发症严重影响受者生存率和生存质量,如何减轻移植肾IRI成为了肾移植领域当前的研究重点。目前认为缺血预处理使移植肾适应缺血是预防IRI发展的有效方法之一,但具体机制尚未完全清楚。本文就缺血预处理在IRI中的应用,缺血预处理对移植肾IRI的调控机制,包括细胞水平的调控和细胞内信号通路的调控,以及缺血预处理的临床应用价值和前景进行综述,以期为改善移植肾IRI,提升肾移植受者和移植肾存活率,改善受者生存质量提供参考。

     

  • 图  1  IPC减轻肾IRI的胞内信号通路

    Figure  1.  Intracellular signaling pathway of IPC attenuating renal IRI

    图  2  IPC通过miRNA调控IRI的机制

    Figure  2.  The mechanism of IPC regulating IRI by miRNA

  • [1] 吴国彬, 陈国栋. 肾脏常温机械灌注与无缺血肾移植[J]. 器官移植, 2022, 13(1): 32-37. DOI: 10.3969/j.issn.1674-7445.2022.01.005.

    WU GB, CHEN GD. Normothermic machine perfusion of kidney and ischemia-free kidney transplantation[J]. Organ Transplant, 2022, 13(1): 32-37. DOI: 10.3969/j.issn.1674-7445.2022.01.005.
    [2] PLOTNIKOV EY. Ischemic preconditioning of the kidney[J]. Bull Exp Biol Med, 2021, 171(5): 567-571. DOI: 10.1007/s10517-021-05270-9.
    [3] XUE J, ZHU K, CAO P, et al. Ischemic preconditioning-induced protective effect for promoting angiogenesis in renal ischemia-reperfusion injury by regulating miR-376c-3p/HIF-1α/VEGF axis in male rats[J]. Life Sci, 2022, 299: 120357. DOI: 10.1016/j.lfs.2022.120357.
    [4] TORRAS J, HERRERO-FRESNEDA I, LLOBERAS N, et al. Promising effects of ischemic preconditioning in renal transplantation[J]. Kidney Int, 2002, 61(6): 2218-2227. DOI: 10.1046/j.1523-1755.2002.00360.x.
    [5] BEHRENDS M, WALZ MK, KRIBBEN A, et al. No protection of the porcine kidney by ischaemic preconditioning[J]. Exp Physiol, 2000, 85(6): 819-827.
    [6] KOSIERADZKI M, AMETANI M, SOUTHARD JH, et al. Is ischemic preconditioning of the kidney clinically relevant?[J]. Surgery, 2003, 133(1): 81-90. DOI: 10.1067/msy.2003.93.
    [7] ORVIETO MA, ZORN KC, MENDIOLA FP, et al. Ischemia preconditioning does not confer resilience to warm ischemia in a solitary porcine kidney model[J]. Urology, 200769(5): 984-987. DOI: 10.1016/j.urology.2007.01.100.
    [8] WEVER KE, MENTING TP, ROVERS M, et al. Ischemic preconditioning in the animal kidney, a systematic review and Meta-analysis[J]. PLoS One, 2012, 7(2): e32296. DOI: 10.1371/journal.pone.0032296.
    [9] GIANNOPOULOS G, VRACHATIS DA, PANAGOPOULOU V, et al. Remote ischemic conditioning and renal protection[J]. J Cardiovasc Pharmacol Ther, 2017, 22(4): 321-329. DOI: 10.1177/1074248417702480.
    [10] ZARBOCK A, KELLUM JA, VAN AKEN H, et al. Long-term effects of remote ischemic preconditioning on kidney function in high-risk cardiac surgery patients: follow-up results from the renal RIP trial[J]. Anesthesiology, 2017, 126(5): 787-798. DOI: 10.1097/ALN.0000000000001598.
    [11] BANG JY, KIM SG, OH J, et al. Impact of remote ischemic preconditioning conducted in living kidney donors on renal function in donors and recipients following living donor kidney transplantation: a randomized clinical trial[J]. J Clin Med, 2019, 8(5): 713. DOI: 10.3390/jcm8050713.
    [12] MUT TT, ACAR Ö, ARMUTLU A, et al. Can remote ischemic preconditioning counteract the renal functional deterioration attributable to partial nephrectomy under warm ischemia? results of an animal study[J]. BMC Nephrol, 2021, 22(1): 266. DOI: 10.1186/s12882-021-02359-1.
    [13] WU J, FENG X, HUANG H, et al. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial[J]. J Surg Res, 2014, 188(1): 303-308. DOI: 10.1016/j.jss.2013.06.058.
    [14] KIM J, FRANKE WD, LANG JA. Delayed window of improvements in skin microvascular function following a single bout of remote ischaemic preconditioning[J]. Exp Physiol, 2021, 106(6): 1380-1388. DOI: 10.1113/EP089438.
    [15] XUE J, QIN Z, LI X, et al. Protective effects of ischemic preconditioning-mediated homing of endothelial progenitor cells on renal acute ischemia and reperfusion injury in male rats[J]. Ann Transplant, 2017, 22: 66-74. DOI: 10.12659/aot.901738.
    [16] LIU H, WU R, JIA RP, et al. Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury[J]. PLoS One, 2013, 8(1): e55389. DOI: 10.1371/journal.pone.0055389.
    [17] ZHU Y, ZHAO K, WANG L, et al. Erythropoietin preconditioning mobilizes endothelial progenitor cells to attenuate nephron-sparing surgery-induced ischemia-reperfusion injury[J]. Transplant Proc, 2020, 52(10): 2955-2963. DOI: 10.1016/j.transproceed.2020.05.008.
    [18] KADKHODAEE M, ARYAMANESH S, FAGHIHI M, et al. Protection of rat renal vitamin E levels by ischemic-preconditioning[J]. BMC Nephrol, 2004, 5: 6. DOI: 10.1186/1471-2369-5-6.
    [19] NIELSEN MB, RAVLO K, EIJKEN M, et al. Dynamics of circulating dendritic cells and cytokines after kidney transplantation-no effect of remote ischaemic conditioning[J]. Clin Exp Immunol, 2021, 206(2): 226-236. DOI: 10.1111/cei.13658.
    [20] LANGE TH, EIJKEN M, BAAN C, et al. Early immunological effects of ischemia-reperfusion injury: no modulation by ischemic preconditioning in a randomised crossover trial in healthy humans[J]. Int J Mol Sci, 2019, 20(12): 2877. DOI: 10.3390/ijms20122877.
    [21] SEDAGHAT Z, KADKHODAEE M, SEIFI B, et al. Inducible and endothelial nitric oxide synthase distribution and expression with hind limb per-conditioning of the rat kidney[J]. Arch Med Sci, 2019, 15(4): 1081-1091. DOI: 10.5114/aoms.2019.85651.
    [22] GHOLAMPOUR F, KHANGAH L, VATANPARAST J, et al. The role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat[J]. Iran J Basic Med Sci, 2018, 21(6): 600-606. DOI: 10.22038/IJBMS.2018.25810.6354.
    [23] YOON YE, CHOI KH, KIM SY, et al. Renoprotective mechanism of remote ischemic preconditioning based on transcriptomic analysis in a porcine renal ischemia reperfusion injury model[J]. PLoS One, 2015, 10(10): e0141099. DOI: 10.1371/journal.pone.0141099.
    [24] GERHARDT LMS, LIU J, KOPPITCH K, et al. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury[J]. Proc Natl Acad Sci U S A, 2021, 118(27): e2026684118. DOI: 10.1073/pnas.2026684118.
    [25] LEE K, GUSELLA GL, HE JC. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease[J]. Kidney Int, 2021, 100(1): 67-78. DOI: 10.1016/j.kint.2021.03.024.
    [26] MOONEN L, D'HAESE PC, VERVAET BA. Epithelial cell cycle behaviour in the injured kidney[J]. Int J Mol Sci, 2018, 19(7): 2038. DOI: 10.3390/ijms19072038.
    [27] KASHANI K, AL-KHAFAJI A, ARDILES T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25. DOI: 10.1186/cc12503.
    [28] EL MINSHAWY O, KHEDR MHS, YOUSSUF AM, et al. Value of the cell cycle arrest biomarkers in the diagnosis of pregnancy-related acute kidney injury[J]. Biosci Rep, 2021, 41(1): BSR20200962. DOI: 10.1042/BSR20200962.
    [29] LIVINGSTON MJ, WANG J, ZHOU J, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys[J]. Autophagy, 2019, 15(12): 2142-2162. DOI: 10.1080/15548627.2019.1615822.
    [30] XIE Y, XIAO J, FU C, et al. Ischemic preconditioning promotes autophagy and alleviates renal ischemia/reperfusion injury[J]. Biomed Res Int, 2018: 8353987. DOI: 10.1155/2018/8353987.
    [31] WANG F, ZHANG G, XING T, et al. Renalase contributes to the renal protection of delayed ischaemic preconditioning via the regulation of hypoxia-inducible factor-1α[J]. J Cell Mol Med, 2015, 19(6): 1400-1409. DOI: 10.1111/jcmm.12527.
    [32] PASTEN C, HERRERA-LUNA Y, LOZANO M, et al. Glutathione S-transferase and clusterin, new players in the ischemic preconditioning renal protection in a murine model of ischemia and reperfusion[J]. Cell Physiol Biochem, 2021, 55(5): 635-650. DOI: 10.33594/000000442.
    [33] LIU Z, GONG R. Remote ischemic preconditioning for kidney protection: GSK3β-centric insights into the mechanism of action[J]. Am J Kidney Dis, 2015, 66(5): 846-856. DOI: 10.1053/j.ajkd.2015.06.026.
    [34] TOROSYAN R, HUANG S, BOMMI PV, et al. Hypoxic preconditioning protects against ischemic kidney injury through the IDO1/kynurenine pathway[J]. Cell Rep, 2021, 36(7): 109547. DOI: 10.1016/j.celrep.2021.109547.
    [35] LI JR, OU YC, WU CC, et al. Ischemic preconditioning improved renal ischemia/reperfusion injury and hyperglycemia[J]. IUBMB Life, 2019, 71(3): 321-329. DOI: 10.1002/iub.1972.
    [36] KHALID U, JENKINS RH, ANDREWS R, et al. Determination of a microRNA signature of protective kidney ischemic preconditioning originating from proximal tubulesa[J]. Sci Rep, 2021, 11(1): 9862. DOI: 10.1038/s41598-021-89195-3.
    [37] LI Z, DENG X, KANG Z, et al. Elevation of miR-21, through targeting MKK3, may be involved in ischemia pretreatment protection from ischemia-reperfusion induced kidney injury[J]. J Nephrol, 2016, 29(1): 27-36. DOI: 10.1007/s40620-015-0217-x.
    [38] GENG X, SONG N, ZHAO S, et al. LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI[J]. Cell Death Discov, 2020, 6: 19. DOI: 10.1038/s41420-020-0253-8.
  • 加载中
图(3)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  97
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回