留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

STING信号通路在缺血-再灌注损伤中的作用研究进展

胡浩然, 徐健, 周浩明. STING信号通路在缺血-再灌注损伤中的作用研究进展[J]. 器官移植, 2022, 13(5): 591-596. doi: 10.3969/j.issn.1674-7445.2022.05.007
引用本文: 胡浩然, 徐健, 周浩明. STING信号通路在缺血-再灌注损伤中的作用研究进展[J]. 器官移植, 2022, 13(5): 591-596. doi: 10.3969/j.issn.1674-7445.2022.05.007
Hu Haoran, Xu Jian, Zhou Haoming. Research progress on the role of STING signal pathway in ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 591-596. doi: 10.3969/j.issn.1674-7445.2022.05.007
Citation: Hu Haoran, Xu Jian, Zhou Haoming. Research progress on the role of STING signal pathway in ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 591-596. doi: 10.3969/j.issn.1674-7445.2022.05.007

STING信号通路在缺血-再灌注损伤中的作用研究进展

doi: 10.3969/j.issn.1674-7445.2022.05.007
基金项目: 

国家自然科学基金 82071798

国家自然科学基金 81600450

详细信息
    作者简介:
    通讯作者:

    周浩明,Email:hmzhou@njmu.edu.cn

  • 中图分类号: R617

Research progress on the role of STING signal pathway in ischemia-reperfusion injury

More Information
  • 摘要: 缺血-再灌注损伤(IRI)是一种广泛存在于器官移植、外科手术中的病理生理过程,主要表现为器官或组织缺血期发生缺氧损伤,恢复灌注后损伤反而进一步加重。缺血-再灌注诱发组织细胞损伤,释放损伤相关分子模式,进一步通过模式识别受体激活多种免疫细胞,导致无菌性炎症,加重组织损伤。环磷酸鸟苷-腺苷酸合成酶(cGAS)作为模式识别受体中的重要成员,可激活干扰素基因刺激因子(STING)信号通路,在先天免疫应答中具有重要调控作用。目前,越来越多的证据表明cGAS-STING信号通路在器官IRI中发挥了重要作用。本文将针对STING信号通路及其在不同器官IRI中的作用和机制展开综述,以期为临床干预提供新的思路。

     

  • [1] KUMAR V. A STING to inflammation and autoimmunity[J]. J Leukoc Biol, 2019, 106(1): 171-185. DOI: 10.1002/JLB.4MIR1018-397RR.
    [2] KWON J, BAKHOUM SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer[J]. Cancer Discov, 2020, 10(1): 26-39. DOI: 10.1158/2159-8290.CD-19-0761.
    [3] DAR WA, SULLIVAN E, BYNON JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801. DOI: 10.1111/liv.14091.
    [4] ZHANG S, DU X, ZHANG K, et al. Effects of sevoflurane on apoptosis of myocardial cells in IRI rats[J]. Biomed Res Int, 2021: 3347949. DOI: 10.1155/2021/3347949.
    [5] PEFANIS A, IERINO FL, MURPHY JM, et al. Regulated necrosis in kidney ischemia-reperfusion injury[J]. Kidney Int, 2019, 96(2): 291-301. DOI: 10.1016/j.kint.2019.02.009.
    [6] 龙嘉琪, 李跃兵. 肺缺血再灌注损伤炎症与自噬相关性的研究进展[J]. 实用医学杂志, 2022, 38(12): 1558-1562. DOI: 10.3969/j.issn.1006-5725.2022.12.021.

    LONG JQ, LI YB. Research progress on the correlation between inflammation and autophagy in lung ischemia reperfusion injury[J]. J Pract Med, 2022, 38(12): 1558-1562. DOI: 10.3969/j.issn.1006-5725.2022.12.021.
    [7] YAN HF, TUO QZ, YIN QZ, et al. The pathological role of ferroptosis in ischemia/reperfusion-related injury[J]. Zool Res, 2020, 41(3): 220-230. DOI: 10.24272/j.issn.2095-8137.2020.042.
    [8] WANG H, XI Z, DENG L, et al. Macrophage polarization and liver ischemia-reperfusion injury[J]. Int J Med Sci, 2021, 18(5): 1104-1113. DOI: 10.7150/ijms.52691.
    [9] NARDO B, CARACENI P, PASINI P, et al. Increased generation of reactive oxygen species in isolated rat fatty liver during postischemic reoxygenation[J]. Transplantation, 2001, 71(12): 1816-1820. DOI: 10.1097/00007890-200106270-00018.
    [10] 胡莎莎, 刘钰, 王朝阳, 等. HMGB1/Caspase-1/GSDMD信号轴介导肝细胞焦亡在肝脏缺血-再灌注损伤中的作用[J]. 器官移植, 2022, 13(1): 88-97. DOI: 10.3969/j.issn.1674-7445.2022.01.014.

    HU SS, LIU Y, WANG ZY, et al. Effect of HMGB1/Caspase-1/GSDMD signaling axis-mediated hepatocyte pyroptosis on liver ischemia-reperfusion injury[J]. Organ Transplant, 2022, 13(1): 88-97. DOI: 10.3969/j.issn.1674-7445.2022.01.014.
    [11] SILVIS MJM, KAFFKA GENAAMD DENGLER SE, ODILLE CA, et al. Damage-associated molecular patterns in myocardial infarction and heart transplantation: the road to translational success[J]. Front Immunol, 2020, 11: 599511. DOI: 10.3389/fimmu.2020.599511.
    [12] LU L, ZHOU H, NI M, et al. Innate immune regulations and liver ischemia-reperfusion injury[J]. Transplantation, 2016, 100(12): 2601-2610. DOI: 10.1097/TP.0000000000001411.
    [13] DEWOLF SE, KASIMSETTY SG, HAWKES AA, et al. DAMPs released from injured renal tubular epithelial cells activate innate immune signals in healthy renal tubular epithelial cells[J]. Transplantation, 2021, 106(8): 1589-1599. DOI: 10.1097/TP.0000000000004038.
    [14] HUANG H, TOHME S, AL-KHAFAJI AB, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury[J]. Hepatology, 2015, 62(2): 600-614. DOI: 10.1002/hep.27841.
    [15] ISHIKAWA H, BARBER GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J]. Nature, 2008, 455(7213): 674-678. DOI: 10.1038/nature07317.
    [16] WU JJ, ZHAO L, HU HG, et al. Agonists and inhibitors of the STING pathway: potential agents for immunotherapy[J]. Med Res Rev, 2020, 40(3): 1117-1141. DOI: 10.1002/med.21649.
    [17] HOPFNER KP, HORNUNG V. Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521. DOI: 10.1038/s41580-020-0244-x.
    [18] FANG R, JIANG Q, GUAN Y, et al. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING[J]. Immunity, 2021, 54(5): 962-975. DOI: 10.1016/j.immuni.2021.03.011.
    [19] CHEN Q, SUN L, CHEN ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing[J]. Nat Immunol, 2016, 17(10): 1142-1149. DOI: 10.1038/ni.3558.
    [20] FANG R, WANG C, JIANG Q, et al. NEMO-IKKβ are essential for IRF3 and NF-κB activation in the cGAS-STING pathway[J]. J Immunol, 2017, 199(9): 3222-3233. DOI: 10.4049/jimmunol.1700699.
    [21] WU XY, CHEN YJ, LIU CA, et al. STING induces liver ischemia-reperfusion injury by promoting calcium-dependent caspase 1-GSDMD processing in macrophages[J]. Oxid Med Cell Longev, 2022: 8123157. DOI: 10.1155/2022/8123157.
    [22] SHEN A, ZHENG D, LUO Y, et al. MicroRNA-24-3p alleviates hepatic ischemia and reperfusion injury in mice through the repression of STING signaling[J]. Biochem Biophys Res Commun, 2020, 522(1): 47-52. DOI: 10.1016/j.bbrc.2019.10.182.
    [23] LEI Z, DENG M, YI Z, et al. cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 314(6): G655-G667. DOI: 10.1152/ajpgi.00326.2017.
    [24] YU Y, LIU Y, AN W, et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest, 2019, 129(2): 546-555. DOI: 10.1172/JCI121842.
    [25] LUO X, LI H, MA L, et al. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice[J]. Gastroenterology, 2018, 155(6): 1971-1984. DOI: 10.1053/j.gastro.2018.09.010.
    [26] ZHONG W, RAO Z, RAO J, et al. Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages[J]. Aging Cell, 2020, 19(8): e13186. DOI: 10.1111/acel.13186.
    [27] 张熙, 黄兵, 王贵鹏. NLRP3炎症小体与心肌缺血再灌注损伤的研究进展[J]. 协和医学杂志, 2022, 13(2): 296-301. DOI: 10.12290/xhyxzz.2021-0619.

    ZHANG X, HUANG B, WANG GP. Progress of NLRP3 inflammasome and myocardial ischemia reperfusion injury[J]. Med J PUMCH, 2022, 13(2): 296-301. DOI: 10.12290/xhyxzz.2021-0619.
    [28] CAO DJ, SCHIATTARELLA GG, VILLALOBOS E, et al. Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury[J]. Circulation, 2018, 137(24): 2613-2634. DOI: 10.1161/CIRCULATIONAHA.117.031046.
    [29] KING KR, AGUIRRE AD, YE YX, et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction[J]. Nat Med, 2017, 23(12): 1481-1487. DOI: 10.1038/nm.4428.
    [30] TER HORST EN, KRIJNEN PAJ, HAKIMZADEH N, et al. Elevated monocyte-specific type I interferon signalling correlates positively with cardiac healing in myocardial infarct patients but interferon alpha application deteriorates myocardial healing in rats[J]. Basic Res Cardiol, 2018, 114(1): 1. DOI: 10.1007/s00395-018-0709-7.
    [31] HU S, GAO Y, GAO R, et al. The selective STING inhibitor H-151 preserves myocardial function and ameliorates cardiac fibrosis in murine myocardial infarction[J]. Int Immunopharmacol, 2022, 107: 108658. DOI: 10.1016/j.intimp.2022.108658.
    [32] YU S, FU J, WANG J, et al. The influence of mitochondrial-DNA-driven inflammation pathways on macrophage polarization: a new perspective for targeted immunometabolic therapy in cerebral ischemia-reperfusion injury[J]. Int J Mol Sci, 2021, 23(1): 135. DOI: 10.3390/ijms23010135.
    [33] LIAO Y, CHENG J, KONG X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway[J]. Theranostics, 2020, 10(21): 9644-9662. DOI: 10.7150/thno.47651.
    [34] JIANG GL, YANG XL, ZHOU HJ, et al. cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke[J]. Brain Res Bull, 2021, 171: 183-195. DOI: 10.1016/j.brainresbull.2021.03.010.
    [35] GAMDZYK M, DOYCHEVA DM, ARAUJO C, et al. cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1[J]. Mol Neurobiol, 2020, 57(6): 2600-2619. DOI: 10.1007/s12035-020-01904-7.
    [36] LI L, QIN JJ, GUO S, et al. Attenuation of cerebral ischemic injury in interferon regulatory factor 3-deficient rat[J]. J Neurochem, 2016, 136(4): 871-883. DOI: 10.1111/jnc.13448.
    [37] LIN F, YAO X, KONG C, et al. 25-Hydroxycholesterol protecting from cerebral ischemia-reperfusion injury through the inhibition of STING activity[J]. Aging (Albany NY), 2021, 13(16): 20149-20163. DOI: 10.18632/aging.203337.
    [38] MALLICK IH, YANG W, WINSLET MC, et al. Ischemia-reperfusion injury of the intestine and protective strategies against injury[J]. Dig Dis Sci, 2004, 49(9): 1359-1377. DOI: 10.1023/b:ddas.0000042232.98927.91.
    [39] TASSOPOULOS A, CHALKIAS A, PAPALOIS A, et al. The effect of antioxidant supplementation on bacterial translocation after intestinal ischemia and reperfusion[J]. Redox Rep, 2017, 22(1): 1-9. DOI: 10.1080/13510002.2016.1229893.
    [40] ZHANG X, WU J, LIU Q, et al. mtDNA-STING pathway promotes necroptosis-dependent enterocyte injury in intestinal ischemia reperfusion[J]. Cell Death Dis, 2020, 11(12): 1050. DOI: 10.1038/s41419-020-03239-6.
    [41] HU Q, REN H, LI G, et al. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis[J]. EBioMedicine, 2019, 41: 497-508. DOI: 10.1016/j.ebiom.2019.02.055.
    [42] WU J, LIU Q, ZHANG X, et al. STING-dependent induction of lipid peroxidation mediates intestinal ischemia-reperfusion injury[J]. Free Radic Biol Med, 2021, 163: 135-140. DOI: 10.1016/j.freeradbiomed.2020.12.010.
    [43] CANESSO MCC, LEMOS L, NEVES TC, et al. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation[J]. Mucosal Immunol, 2018, 11(3): 820-834. DOI: 10.1038/mi.2017.88.
    [44] BAI J, LIU F. cGAS‒STING signaling and function in metabolism and kidney diseases[J]. J Mol Cell Biol, 2021, 13(10): 728-738. DOI: 10.1093/jmcb/mjab066.
    [45] MAEKAWA H, INOUE T, OUCHI H, et al. Mitochondrial damage causes inflammation via CGAS-sting signaling in acute kidney injury[J]. Cell Rep, 2019, 29(5): 1261-1273. DOI: 10.1016/j.celrep.2019.09.050.
    [46] CHUNG KW, DHILLON P, HUANG S, et al. Mitochondrial damage and activation of the sting pathway lead to renal inflammation and fibrosis[J]. Cell Metab, 2019, 30(4): 784-799. DOI: 10.1016/j.cmet.2019.08.003.
    [47] FREITAS MC, UCHIDA Y, LASSMAN C, et al. Type I interferon pathway mediates renal ischemia/reperfusion injury[J]. Transplantation, 2011, 92(2): 131-138. DOI: 10.1097/TP.0b013e318220586e.
  • 加载中
图(1)
计量
  • 文章访问数:  523
  • HTML全文浏览量:  108
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回