留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

枯否细胞极化状态在肝移植免疫耐受中的作用

刘涛 李金政

刘涛, 李金政. 枯否细胞极化状态在肝移植免疫耐受中的作用[J]. 器官移植, 2021, 12(6): 687-691. doi: 10.3969/j.issn.1674-7445.2021.06.007
引用本文: 刘涛, 李金政. 枯否细胞极化状态在肝移植免疫耐受中的作用[J]. 器官移植, 2021, 12(6): 687-691. doi: 10.3969/j.issn.1674-7445.2021.06.007
Liu Tao, Li Jinzheng. Role of Kupffer cell polarization in immune tolerance of liver transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 687-691. doi: 10.3969/j.issn.1674-7445.2021.06.007
Citation: Liu Tao, Li Jinzheng. Role of Kupffer cell polarization in immune tolerance of liver transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 687-691. doi: 10.3969/j.issn.1674-7445.2021.06.007

枯否细胞极化状态在肝移植免疫耐受中的作用

doi: 10.3969/j.issn.1674-7445.2021.06.007
基金项目: 

国家自然科学基金面上项目 81671580

详细信息
    作者简介:

    刘涛,男,1997年生,硕士研究生,研究方向为肝移植,Email:921482342@qq.com

    通讯作者:

    李金政,男,1983年生,博士,副主任医师,研究方向为肝移植与免疫耐受,Email:vitamin198305@163.com

  • 中图分类号: R617, R392.4

Role of Kupffer cell polarization in immune tolerance of liver transplantation

More Information
  • 摘要: 随着外科手术技术的成熟,肝移植手术成功率逐渐提高,然而术后长期免疫耐受的建立仍然面临着许多问题。枯否(Kupffer)细胞是一种组织驻留型巨噬细胞,常驻于肝脏当中,其可在肝移植术后向着不同方向极化,形成M1型Kupffer细胞和M2型Kupffer细胞。M1型Kupffer细胞具有促炎功能,M2型Kupffer细胞具有免疫调节功能。通过抑制M1型Kupffer细胞数量和功能,或者促使M2型Kupffer细胞数量增加和功能增强,有助于免疫耐受的建立。Kupffer细胞的极化受到诸多细胞因子和信号的调节,这为通过干预Kupffer细胞极化来建立肝移植免疫耐受的疗法提供了机会。本文将就Kupffer细胞极化状态与肝移植免疫耐受的关系、Kupffer细胞极化机制进行综述,旨在为建立肝移植免疫耐受提供参考。

     

  • 图  1  Kupffer细胞的极化机制

    注:SAHA为异羟肟酸;α-KG为α-酮戊二酸;TLR4为Toll样受体4;MyD88为髓样分化因子88;PI3K为磷脂酰肌醇-3-激酶;Akt为蛋白激酶B;NF-κB为核因子-κB;GSK3β为糖原合酶激酶3β;TRIF为β干扰素诱导的含TIR结构域接头蛋白。

    Figure  1.  The polarization mechanism of Kupffer cell

  • [1] ZHOU J, CHEN J, WEI Q, et al. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction[J]. Liver Transpl, 2020, 26(8): 1034-1048. DOI: 10.1002/lt.25779.
    [2] THOMSON AW, VIONNET J, SANCHEZ-FUEYO A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(12): 719-739. DOI: 10.1038/s41575-020-0334-4.
    [3] KAZANKOV K, JØRGENSEN SMD, THOMSEN KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(3): 145-159. DOI: 10.1038/s41575-018-0082-x.
    [4] ZWICKER C, BUJKO A, SCOTT CL. Hepatic macrophage responses in inflammation, a function of plasticity, heterogeneity or both? [J]. Front Immunol, 2021, 12: 690813. DOI: 10.3389/fimmu.2021.690813.
    [5] YE L, HE S, MAO X, et al. Effect of hepatic macrophage polarization and apoptosis on liver ischemia and reperfusion injury during liver transplantation[J]. Front Immunol, 2020, 11: 1193. DOI: 10.3389/fimmu.2020.01193.
    [6] ELLIAS SD, LARSON EL, TANER T, et al. Cell-mediated therapies to facilitate operational tolerance in liver transplantation[J]. Int J Mol Sci, 2021, 22(8): 4016. DOI: 10.3390/ijms22084016.
    [7] CHEN L, ZHANG L, ZHU Z, et al. Effects of IL-10- and FasL-overexpressing dendritic cells on liver transplantation tolerance in a heterotopic liver transplantation rat model[J]. Immunol Cell Biol, 2019, 97(8): 714-725. DOI: 10.1111/imcb.12252.
    [8] PALLETT LJ, BURTON AR, AMIN OE, et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes[J]. J Exp Med, 2020, 217(9): e20200050. DOI: 10.1084/jem.20200050.
    [9] CHEN X, WANG L, DENG Y, et al. Inhibition of autophagy prolongs recipient survival through promoting CD8+ T cell apoptosis in a rat liver transplantation model[J]. Front Immunol, 2019, 10: 1356. DOI: 10.3389/fimmu.2019.01356.
    [10] XU XS, FENG ZH, CAO D, et al. SCARF1 promotes M2 polarization of Kupffer cells via calcium-dependent PI3K-Akt-STAT3 signalling to improve liver transplantation[J]. Cell Prolif, 2021, 54(4): e13022. DOI: 10.1111/cpr.13022.
    [11] WANG LX, ZHANG SX, WU HJ, et al. M2b macrophage polarization and its roles in diseases[J]. J Leukoc Biol, 2019, 106(2): 345-358. DOI: 10.1002/JLB.3RU1018-378RR.
    [12] SALOMON BL. Insights into the biology and therapeutic implications of TNF and regulatory T cells[J]. Nat Rev Rheumatol, 2021, 17(8): 487-504. DOI: 10.1038/s41584-021-00639-6.
    [13] ZHANG M, LIU HL, HUANG K, et al. Fuzheng Huayu recipe prevented and treated CCl4-induced mice liver fibrosis through regulating polarization and chemotaxis of intrahepatic macrophages via CCL2 and CX3CL1[J]. Evid Based Complement Alternat Med, 2020: 8591892. DOI: 10.1155/2020/8591892.
    [14] WU H, LIU H, ZHAO X, et al. IKIP negatively regulates NF-κB activation and inflammation through inhibition of IKKα/β phosphorylation[J]. J Immunol, 2020, 204(2): 418-427. DOI: 10.4049/jimmunol.1900626.
    [15] WANG J, DENG M, WU H, et al. Suberoylanilide hydroxamic acid alleviates orthotopic liver transplantation-induced hepatic ischemia-reperfusion injury by regulating the Akt/GSK3β/NF-κB and Akt/mTOR pathways in rat Kupffer cells[J]. Int J Mol Med, 2020, 45(6): 1875-1887. DOI: 10.3892/ijmm.2020.4551.
    [16] DENG M, WANG J, WU H, et al. IL-4 alleviates ischaemia-reperfusion injury by inducing Kupffer cells M2 polarization via STAT6-JMJD3 pathway after rat liver transplantation[J]. Biomed Res Int, 2020: 2953068. DOI: 10.1155/2020/2953068.
    [17] BOSURGI L, CAO YG, CABEZA-CABRERIZO M, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells[J]. Science, 2017, 356(6342): 1072-1076. DOI: 10.1126/science.aai8132.
    [18] ZHENG XL, WU JP, GONG Y, et al. IL-25 protects against high-fat diet-induced hepatic steatosis in mice by inducing IL-25 and M2a macrophage production[J]. Immunol Cell Biol, 2019, 97(2): 165-177. DOI: 10.1111/imcb.12207.
    [19] SONG Y, WANG Y, QI X, et al. Da-Huang-Fu-Zi-Tang ameliorates severe acute pancreatitis by elevation of M2 Kupffer cells in rats[J]. Evid Based Complement Alternat Med, 2021: 5561216. DOI: 10.1155/2021/5561216.
    [20] MU D, MIAO C, CHENG Y, et al. The on-off action of forkhead protein O3a in endotoxin tolerance of Kupffer cells depends on the PI3K/Akt pathway[J]. Int Immunopharmacol, 2020, 82: 106342. DOI: 10.1016/j.intimp.2020.106342.
    [21] WANG Z, WU L, PAN B, et al. Interleukin 33 mediates hepatocyte autophagy and innate immune response in the early phase of acetaminophen-induced acute liver injury[J]. Toxicology, 2021, 456: 152788. DOI: 10.1016/j.tox.2021.152788.
    [22] CHENG MX, CAO D, CHEN Y, et al. α-ketoglutarate attenuates ischemia-reperfusion injury of liver graft in rats[J]. Biomed Pharmacother, 2019, 111: 1141-1146. DOI: 10.1016/j.biopha.2018.12.149.
    [23] MEHLA K, SINGH PK. Metabolic regulation of macrophage polarization in cancer[J]. Trends Cancer, 2019, 5(12): 822-834. DOI: 10.1016/j.trecan.2019.10.007.
    [24] REN W, XIA Y, CHEN S, et al. Glutamine metabolism in macrophages: a novel target for obesity/type 2 diabetes[J]. Adv Nutr, 2019, 10(2): 321-330. DOI: 10.1093/advances/nmy084.
    [25] SWAIN A, BAMBOUSKOVA M, KIM H, et al. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages[J]. Nat Metab, 2020, 2(7): 594-602. DOI: 10.1038/s42255-020-0210-0.
    [26] O'NEILL LAJ, ARTYOMOV MN. Itaconate: the poster child of metabolic reprogramming in macrophage function[J]. Nat Rev Immunol, 2019, 19(5): 273-281. DOI: 10.1038/s41577-019-0128-5.
    [27] SANTOS BC, CORREIA MITD, ANASTÁCIO LR. Energy expenditure and liver transplantation: what we know and where we are[J]. JPEN J Parenter Enteral Nutr, 2021, 45(3): 456-464. DOI: 10.1002/jpen.1985.
    [28] SCHIELKE A, CONTI F, GOUMARD C, et al. Liver transplantation using grafts with rare metabolic disorders[J]. Dig Liver Dis, 2015, 47(4): 261-270. DOI: 10.1016/j.dld.2014.11.004.
  • 加载中
图(2)
计量
  • 文章访问数:  687
  • HTML全文浏览量:  190
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回