留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淋巴细胞亚群分类对肾移植受者活动性肺结核的诊断价值

易王 成柯

易王, 成柯. 淋巴细胞亚群分类对肾移植受者活动性肺结核的诊断价值[J]. 器官移植, 2020, 11(5): 605-609. doi: 10.3969/j.issn.1674-7445.2020.05.013
引用本文: 易王, 成柯. 淋巴细胞亚群分类对肾移植受者活动性肺结核的诊断价值[J]. 器官移植, 2020, 11(5): 605-609. doi: 10.3969/j.issn.1674-7445.2020.05.013
Yi Wang, Cheng Ke. Diagnostic value of lymphocyte subset classification for active pulmonary tuberculosis in renal transplant recipients[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 605-609. doi: 10.3969/j.issn.1674-7445.2020.05.013
Citation: Yi Wang, Cheng Ke. Diagnostic value of lymphocyte subset classification for active pulmonary tuberculosis in renal transplant recipients[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 605-609. doi: 10.3969/j.issn.1674-7445.2020.05.013

淋巴细胞亚群分类对肾移植受者活动性肺结核的诊断价值

doi: 10.3969/j.issn.1674-7445.2020.05.013
基金项目: 湖南省自然科学基金(S2017JJMSXM1518)
详细信息
    作者简介:

    易王,男,1995年生,硕士研究生,研究方向为器官移植与术后管理,Email:yiwang1995@csu.edu.com

    通讯作者:

    成柯,男,1972年生,博士,主任医师,研究方向为器官移植与术后管理,Email:chke1972@163.com

  • 中图分类号: R617, R521

Diagnostic value of lymphocyte subset classification for active pulmonary tuberculosis in renal transplant recipients

More Information
  • 摘要:   目的  探讨淋巴细胞亚群分类在诊断肾移植受者活动性肺结核中的临床价值。  方法  回顾性分析52例肾移植术后受者的临床资料。根据影像学检查和病原学检查结果,将52例受者分为稳定组(19例)、结核组(9例)、细菌组(12例)以及真菌组(12例)。比较各组受者的肾功能情况;分析并比较各组受者淋巴细胞亚群的比例和绝对值;分析淋巴细胞亚群分类在肾移植术后活动性肺结核中的诊断价值。  结果  与稳定组比较,结核组、细菌组、真菌组的血尿素氮和血清肌酐水平均明显升高(均为P<0.05),CD3+、CD8+、CD4+、自然杀伤(NK)细胞和CD19+淋巴细胞亚群的比例差异无统计学意义(均为P>0.05),CD3+、CD8+、CD4+、NK和CD19+淋巴细胞亚群的绝对值明显降低(均为P<0.05)。结核组和真菌组的CD8+淋巴细胞亚群比例明显高于细菌组(均为P<0.05)。CD8+淋巴细胞亚群比例在鉴别诊断肾移植受者活动性肺结核和细菌性肺炎中的最佳临界值是33.27%,灵敏度和特异度分别为0.889和0.833,曲线下面积(AUC)为0.880。  结论  淋巴细胞亚群分类可为肾移植受者活动性肺结核与细菌性肺炎的鉴别诊断和个体化治疗方案提供辅助诊断依据。

     

  • 图  1  各组肾移植受者淋巴细胞亚群的比例和绝对值

    注:与细菌组比较,aP<0.05;与稳定组比较,bP<0.05;与真菌组比较,cP<0.05。

    Figure  1.  Percentage and absolute value of lymphocyte subsets in renal transplant recipients of each group

    图  2  CD8+淋巴细胞亚群比例诊断肾移植受者活动性肺结核的ROC曲线

    Figure  2.  The ROC curve of percentage of CD8+ lymphocyte subsets for diagnosing active tuberculosis in renal transplant recipients

  • [1] 张新宝, 周瑛, 姚超, 等.结核感染T细胞斑点试验诊断胸腔积液的价值[J].实用医学杂志, 2019, 35(9):1492- 1495. DOI: 10.3969/j.issn.1006-5725.2019.09.031.

    ZHANG XB, ZHOU Y, YAO C, et al. Value of T-spot. TB test in diagnosis of pleural effusion[J]. J Pract Med, 2019, 35(9):1492-1495. DOI:10.3969/j.issn.1006-5725. 2019.09.031.
    [2] MUÑOZ P, RODRÍGUEZ C, BOUZA E. Mycobacterium tuberculosis infection in recipients of solid organ transplants[J]. Clin Infect Dis, 2005, 40(4):581-587. DOI: 10.1086/427692.
    [3] DOWDY DW, BASU S, ANDREWS JR. Is passive diagnosis enough? the impact of subclinical disease on diagnostic strategies for tuberculosis[J]. Am J Respir Crit Care Med, 2013, 187(5):543-551. DOI:10.1164/ rccm.201207-1217OC.
    [4] WU W, YANG M, XU M, et al. Diagnostic delay and mortality of active tuberculosis in patients after kidney transplantation in a tertiary care hospital in China[J]. PLoS One, 2018, 13(4):e0195695. DOI:10.1371/journal. pone.0195695.
    [5] MARQUES ID, AZEVEDO LS, PIERROTTI LC, et al. Clinical features and outcomes of tuberculosis in kidney transplant recipients in Brazil: a report of the last decade[J]. Clin Transplant, 2013, 27(2):E169-E176. DOI:10.1111/ ctr.12077.
    [6] VIANA LA, CRISTELLI MP, SANTOS DW, et al.Influence of epidemiology, immunosuppressive regimens, clinical presentation, and treatment on kidney transplant outcomes of patients diagnosed with tuberculosis: a retrospective cohort analysis[J]. Am J Transplant, 2019, 19(5):1421-1431. DOI: 10.1111/ajt.15220.
    [7] CALAROTA SA, ZELINI P, DE SILVESTRI A, et al. Kinetics of T-lymphocyte subsets and posttransplant opportunistic infections in heart and kidney transplant recipients[J]. Transplantation, 2012, 93(1):112-119. DOI: 10.1097/TP.0b013e318239e90c.
    [8] PAI M, DENKINGER CM, KIK SV, et al. Gamma interferon release assays for detection of mycobacterium tuberculosis infection[J]. Clin microbiol Rev, 2014, 27(1):3-20. DOI: 10.1128/CMR.00034-13.
    [9] JAMBALDORJ E, HAN M, JEONG JC, et al. Poor predictability of QuantiFERON-TB assay in recipients and donors for tuberculosis development after kidney transplantation in an intermediate-TB-burden country[J]. BMC Nephrol, 2017, 18(1):88. DOI:10.1186/s12882-017- 0506-9.
    [10] GIACOMELLI IL, SCHUHMACHER NETO R, MARCHIORI E, et al. Chest X-ray and chest CT findings in patients diagnosed with pulmonary tuberculosis following solid organ transplantation: a systematic review[J]. J Bras Pneumol, 2018, 44(2):161-166. DOI:10.1590/s1806- 37562017000000459.
    [11] NATORI Y, FERREIRA VH, NELLIMARLA S, et al. Incidence, outcomes, and long-term immune response to tuberculosis in organ transplant recipients[J]. Transplantation, 2019, 103(1):210-215. DOI:10.1097/ TP.0000000000002340.
    [12] LI G, YANG F, HE X, et al. Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients[J]. Microbes Infect, 2020, 22(3):119-126. DOI:10.1016/ j.micinf.2019.10.001.
    [13] CACCAMO N, PIETRA G, SULLIVAN LC, et al. Human CD8 T lymphocytes recognize mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines[J]. Eur J Immunol, 2015, 45(4):1069-1081. DOI:10.1002/ eji.201445193.
    [14] MCMURTREY C, HARRIFF MJ, SWARBRICK GM, et al. T cell recognition of mycobacterium tuberculosis peptides presented by HLA-E derived from infected human cells[J]. PLoS One, 2017, 12(11):e0188288. DOI:10.1371/ journal.pone.0188288.
    [15] PREZZEMOLO T, VAN MEIJGAARDEN KE, FRANKEN KLMC, et al. Detailed characterization of human mycobacterium tuberculosis specific HLA-E restricted CD8+ T cells[J]. Eur J Immunol, 2018, 48(2):293-305. DOI: 10.1002/eji.201747184.
    [16] GRANT EJ, NGUYEN AT, LOBOS CA, et al. The unconventional role of HLA-E: the road less traveled[J]. Mol Immunol, 2020, 120:101-112. DOI:10.1016/j.molimm. 2020.02.011.
    [17] VAN MEIJGAARDEN KE, HAKS MC, CACCAMO N, et al. Human CD8+ T-cells recognizing peptides from mycobacterium tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb inhibitory phenotype and represent a novel human T-cell subset[J]. PLoS Pathog, 2015, 11(3):e1004671. DOI: 10.1371/journal.ppat.1004671.
    [18] TAMBUNAN BA, PRIYANTO H, NUGRAHA J, et al. CD4+ and CD8+ T-cells expressing interferon gamma in active pulmonary tuberculosis patients[J]. Afr J Infect Dis, 2018, 12(1 Suppl):49-53. DOI: 10.2101/Ajid.12v1S.6.
    [19] YANG JD, MOTT D, SUTIWISESAK R, et al. Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages[J]. PLoS Pathog, 2018, 14(5):e1007060. DOI: 10.1371/journal.ppat.1007060.
    [20] HERZMANN C, DALLENGA T, KALINKE U. Pulmonary immune mechanisms in tuberculosis[J]. Pneumologie, 2018, 72(7):493-502. DOI: 10.1055/s-0043-122961.
    [21] LIN PL, FLYNN JL. CD8 T cells and mycobacterium tuberculosis infection[J]. Semin Immunopathol, 2015, 37(3):239-249. DOI: 10.1007/s00281-015-0490-8.
    [22] LAZAREVIC V, FLYNN J. CD8+ T cells in tuberculosis[J]. Am J Respir Crit Care Med, 2002, 166(8):1116-1121. DOI: 10.1164/rccm.2204027.
    [23] PALLET N, FERNÁNDEZ-RAMOS AA, LORIOT MA. Impact of immunosuppressive drugs on the metabolism of T cells[J]. Int Rev Cell Mol Biol, 2018, 341:169-200. DOI: 10.1016/bs.ircmb.2018.05.009.
    [24] FERNÁNDEZ-RAMOS AA, POINDESSOUS V, MARCHETTI-LAURENT C, et al. The effect of immunosuppressive molecules on T-cell metabolic reprogramming[J]. Biochimie, 2016, 127:23-36. DOI: 10.1016/j.biochi.2016.04.016.
    [25] WANG J, DAI Y, LIU J, et al. MTB-specific lymphocyte responses are impaired in tuberculosis patients with pulmonary cavities[J]. Eur J Med Res, 2017, 22(1):4. DOI: 10.1186/s40001-016-0242-9.
  • 加载中
图(2)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  55
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回