留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IL-17C影响小鼠移植肾存活的机制

崔瀚文 张颖 孙致强 李聪然 金海龙 李响 蔡明 袁清

崔瀚文, 张颖, 孙致强, 等. IL-17C影响小鼠移植肾存活的机制[J]. 器官移植, 2020, 11(1): 60-65. doi: 10.3969/j.issn.1674-7445.2020.01.009
引用本文: 崔瀚文, 张颖, 孙致强, 等. IL-17C影响小鼠移植肾存活的机制[J]. 器官移植, 2020, 11(1): 60-65. doi: 10.3969/j.issn.1674-7445.2020.01.009
Cui Hanwen, Zhang Ying, Sun Zhiqiang, et al. Mechanism of effect of IL-17C on survival of kidney graft in mice[J]. ORGAN TRANSPLANTATION, 2020, 11(1): 60-65. doi: 10.3969/j.issn.1674-7445.2020.01.009
Citation: Cui Hanwen, Zhang Ying, Sun Zhiqiang, et al. Mechanism of effect of IL-17C on survival of kidney graft in mice[J]. ORGAN TRANSPLANTATION, 2020, 11(1): 60-65. doi: 10.3969/j.issn.1674-7445.2020.01.009

IL-17C影响小鼠移植肾存活的机制

doi: 10.3969/j.issn.1674-7445.2020.01.009
基金项目: 

国家自然科学基金项目 81570679

国家自然科学基金项目 81200547

北京市科技新星计划 Z161100004916141

天津市滨海新区联合攻关项目 2014BWKL003

详细信息
    作者简介:

    崔瀚文,男,1986年生,硕士,主治医师,研究方向为肾移植免疫,Email:tjtgchw@126.com

    通讯作者:

    袁清,男,1982年生,博士,副主任医师,研究方向为肾移植免疫,Email:16667794@qq.com

  • 中图分类号: R617, R392.4

Mechanism of effect of IL-17C on survival of kidney graft in mice

More Information
  • 摘要:   目的  探讨白细胞介素(IL)-17C在小鼠肾移植中的作用及其机制。  方法  以Balb/c(H-2Kd)小鼠为供体,IL-17C基因敲除(IL-17CKO)小鼠(敲除组)、C57BL/6J(H-2Kb)小鼠(野生组)为受体,建立小鼠生命支持型肾移植模型。术后比较两组小鼠的体质量及存活时间。采用苏木素-伊红(HE)染色及过碘酸-雪夫(PAS)染色对移植肾进行病理学检查。采用逆转录聚合酶链反应(RT-PCR)检测移植肾组织中颗粒酶B、干扰素(IFN)-γ、肿瘤坏死因子(TNF)-α、IL-6及IL-1β的信使核糖核酸(mRNA)表达水平,采用流式细胞术检测移植肾组织中炎症细胞浸润情况。  结果  移植术后敲除组小鼠存活时间显著短于野生组小鼠(P=0.031),且体质量下降程度更明显,但差异无统计学意义。病理分析发现敲除组小鼠移植肾损伤较野生组小鼠明显加重。敲除组小鼠移植肾组织中颗粒酶B、IFN-γ、TNF-α、IL-6的mRNA表达水平均显著高于野生组(均为P < 0.01),IL-1β mRNA表达呈降低趋势,但差异无统计学意义(P=0.16)。流式细胞分析发现敲除组小鼠移植肾组织中CD45+CD11b+Ly6G+中性粒细胞和CD45+CD11b+Ly6Chi单核细胞浸润较野生组小鼠明显增加(分别为P < 0.05,P < 0.01),而CD45+ Ly6Chi F4/80+巨噬细胞浸润无明显变化(P > 0.05)。  结论  IL-17C参与肾移植后炎症反应的调控,可能通过降低促炎细胞因子的表达及炎症细胞的浸润来减轻急性排斥反应,改善移植肾存活情况。

     

  • 图  1  小鼠肾移植术后存活时间

    Figure  1.  Survival time after renal transplantation in mice

    图  2  小鼠肾移植术后体质量变化情况

    Figure  2.  Changes of body mass after renal transplantation in mice

    图  3  小鼠移植肾病理学改变(HE,×200)

    注:与野生组小鼠比较,敲除组小鼠肾间质可见大量炎症细胞浸润、血管纤维化及周围炎症浸润,同时伴有血栓形成。

    Figure  3.  The pathological changes of the kidney allograft in mice

    图  4  小鼠移植肾病理学改变(PAS,×200)

    注:与野生组小鼠比较,敲除组小鼠移植肾的肾小管细胞刷状缘明显减少甚至消失。

    Figure  4.  The pathological changes of the kidney allograft in mice

    图  5  小鼠移植肾组织匀浆中炎症细胞因子表达情况

    注:与野生组小鼠比较,aP < 0.01。

    Figure  5.  Expression of inflammatory cytokines in renal allograft homogenate of mice

    图  6  小鼠移植肾组织中浸润细胞流式细胞分析

    Figure  6.  Flow cytometry analysis of infiltrating cells in mice renal allograft

  • [1] TAJIMA S, FU R, SHIGEMATSU T, et al. Urinary human epididymis secretory protein 4 as a useful biomarker for subclinical acute rejection three months after kidney transplantation[J]. Int J Mol Sci, 2019, 20(19):E4699. DOI: 10.3390/ijms20194699.
    [2] SALCEDO-HERRERA S, PINTO RAMIREZ JL, GARCíA-LOPEZ A, et al. Acute rejection in kidney transplantation and early beginning of tacrolimus[J]. Transplant Proc, 2019, 51(6):1758-1762. DOI: 10.1016/j.transproceed.2019.04.048.
    [3] HU X, SU M, LIN J, et al. Corin is downregulated in renal ischemia/reperfusion injury and is associated with delayed graft function after kidney transplantation[J]. Dis Markers, 2019:9429323. DOI: 10.1155/2019/9429323.
    [4] SU S, ZHANG P, ZHANG Q, et al. GSK-3β inhibitor induces expression of the TLR4/MyD88/NF-κB signaling pathway to protect against renal ischemia-reperfusion injury during rat kidney transplantation[J]. Inflammation, 2019, 42(6):2105-2118.DOI: 10.1007/s10753-019-01074-2.
    [5] 金钟大, 具春花.大鼠心肾联合移植模型的建立[J].实用医学杂志, 2017, 33(16):2639-2642. DOI: 10.3969/j.issn.1006-5725.2017.16.008.

    JIN ZD, JU CH. Establishment of a rat model of heart and kidney transplantation[J]. J Pract Med, 2017, 33(16):2639-2642.DOI: 10.3969/j.issn.1006-5725.2017.16.008.
    [6] CHANG SH, REYNOLDS JM, PAPPU BP, et al. Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E[J]. Immunity, 2011, 35(4):611-621. DOI: 10.1016/j.immuni. 2011.09.010.
    [7] SONG X, ZHU S, SHI P, et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens[J]. Nat Immunol, 2011, 12(12):1151-1158. DOI: 10.1038/ni.2155.
    [8] LI H, CHEN J, HUANG A, et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family[J]. Proc Natl Acad Sci U S A, 2000, 97(2):773-778. doi: 10.1073/pnas.97.2.773
    [9] KROHN S, NIES JF, KAPFFER S, et al. IL-17C/IL-17 receptor E signaling in CD4+ T cells promotes Th17 cell-driven glomerular inflammation[J]. J Am Soc Nephrol, 2018, 29(4):1210-1222. DOI: 10.1681/ASN.2017090949.
    [10] AGGARWAL S, GHILARDI N, XIE MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17 [J]. J Biol Chem, 2003, 278(3):1910-1914. doi: 10.1074/jbc.M207577200
    [11] LOVERRE A, DIVELLA C, CASTELLANO G, et al. T helper 1, 2 and 17 cell subsets in renal transplant patients with delayed graft function[J]. Transpl Int, 2011, 24(3):233-242. DOI: 10.1111/j.1432-2277.2010.01157.x.
    [12] TURNER JE, PAUST HJ, STEINMETZ OM, et al. The Th17 immune response in renal inflammation[J]. Kidney Int, 2010, 77(12):1070-1075. DOI: 10.1038/ki.2010.102.
    [13] HAOUAMI Y, DHAOUADI T, SFAR I, et al. The role of IL-23/IL-17 axis in human kidney allograft rejection[J]. J Leukoc Biol, 2018, 104(6):1229-1239. DOI: 10.1002/JLB.5AB0318-148R.
    [14] LOVERRE A, TATARANNI T, CASTELLANO G, et al. IL-17 expression by tubular epithelial cells in renal transplant recipients with acute antibody-mediated rejection[J]. Am J Transplant, 2011, 11(6):1248-1259. DOI: 10.1111/j.1600-6143.2011.03529.x.
    [15] LI J, BASLER M, ALVAREZ G, et al. Immunoproteasome inhibition prevents chronic antibody-mediated allograft rejection in renal transplantation[J]. Kidney Int, 2018, 93(3):670-680. DOI: 10.1016/j.kint. 2017.09.023.
    [16] HWANG SY, KIM HY. Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients[J]. Mol Cells, 2005, 19(2):180-184. http://cn.bing.com/academic/profile?id=31356686141710a81df0f65a4130c149&encoded=0&v=paper_preview&mkt=zh-cn
    [17] BUTCHER MJ, WASEEM TC, GALKINA EV. Smooth muscle cell-derived interleukin-17C plays an atherogenic role via the recruitment of proinflammatory interleukin-17A+ T cells to the aorta[J]. Arterioscler Thromb Vasc Biol, 2016, 36(8):1496-1506. DOI: 10.1161/ATVBAHA. 116.307892.
    [18] RAMIREZ-CARROZZI V, SAMBANDAM A, LUIS E, et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner[J]. Nat Immunol, 2011, 12(12):1159-1166. DOI: 10.1038/ni.2156.
    [19] TANAKA S, NAGASHIMA H, CRUZ M, et al. Interleukin-17C in human helicobacter pylori gastritis[J]. Infect Immun, 2017, 85(10):e00389-17. DOI: 10.1128/IAI.00389-17.
    [20] REYNOLDS JM, MARTINEZ GJ, NALLAPARAJU KC, et al. Cutting edge: regulation of intestinal inflammation and barrier function by IL-17C[J]. J Immunol, 2012, 189(9):4226-4230. DOI: 10.4049/jimmunol.1103014.
    [21] JAMIESON KC, TRAVES SL, KOOI C, et al. Rhinovirus and bacteria synergistically induce IL-17C release from human airway epithelial cells to promote neutrophil recruitment[J].J Immunol, 2018, 202(1): 160-170. DOI: 10.4049/jimmunol.1800547.
    [22] HIROTA K, YOSHITOMI H, HASHIMOTO M, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model[J]. J Exp Med, 2007, 204(12):2803-2812. doi: 10.1084/jem.20071397
    [23] WANG JC, LEE JY, CHRISTIAN S, et al. The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse[J]. J Cell Sci, 2017, 130(6):1094-1109. DOI: 10.1242/jcs.191858.
    [24] IBAÑEZ-VEGA J, DEL VALLE BATALLA F, SAEZ JJ, et al. Proteasome dependent actin remodeling facilitates antigen extraction at the immune synapse of B cells[J]. Front Immunol, 2019, 10:225. DOI: 10.3389/fimmu.2019.00225.
    [25] GONG H, MA S, LIU S, et al. IL-17C mitigates murine acute graft-vs.-host disease by promoting intestinal barrier functions and treg differentiation[J]. Front Immunol, 2018, 9:2724. DOI: 10.3389/fimmu.2018.02724.
  • 加载中
图(6)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  106
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-11
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-01-15

目录

    /

    返回文章
    返回