Volume 13 Issue 3
May  2022
Turn off MathJax
Article Contents
Wu Changhong, Xu Ya'nan, Tian Qianchuan, et al. Research progress on basic immunology of organ transplantation in 2021[J]. ORGAN TRANSPLANTATION, 2022, 13(3): 317-324. doi: 10.3969/j.issn.1674-7445.2022.03.006
Citation: Wu Changhong, Xu Ya'nan, Tian Qianchuan, et al. Research progress on basic immunology of organ transplantation in 2021[J]. ORGAN TRANSPLANTATION, 2022, 13(3): 317-324. doi: 10.3969/j.issn.1674-7445.2022.03.006

Research progress on basic immunology of organ transplantation in 2021

doi: 10.3969/j.issn.1674-7445.2022.03.006
More Information
  • Corresponding author: Zhao Yong, Email: zhaoy@ioz.ac.cn
  • Received Date: 2022-02-08
    Available Online: 2022-04-29
  • Publish Date: 2022-05-15
  • In recent years, the science and technology of organ transplantation have developed rapidly, which has been widely applied worldwide. However, multiple challenges remain to be resolved by clinicians, such as functional damage and immune rejection of transplant organs, immune deficiency caused by extensive use of immunosuppressants, chronic allograft dysfunction and adverse reactions. This article introduced relevant key research results published in 2021, taking the function and mechanism of immune cell subsets in the process of organ transplantation rejection or immune tolerance, and the research and application of new materials and drugs in organ transplantation as the main clues. The latest research progresses on regional immune response, especially the application of tissue-resident memory T cell in organ transplantation, were briefly summarized, and the future development of transplantation immunology was prospected.

     

  • loading
  • [1]
    OTSUKA S, MELIS N, GAIDA MM, et al. Calcineurin inhibitors suppress acute graft-versus-host disease via NFAT-independent inhibition of T cell receptor signaling[J]. J Clin Invest, 2021, 131(11): e147683. DOI: 10.1172/JCI147683.
    [2]
    MOHAMMED MT, CAI S, HANSON BL, et al. Follicular T cells mediate donor-specific antibody and rejection after solid organ transplantation[J]. Am J Transplant, 2021, 21(5): 1893-1901. DOI: 10.1111/ajt.16484.
    [3]
    GUGLIELMO C, BIN S, CANTARELLI C, et al. Erythropoietin reduces auto- and alloantibodies by inhibiting T follicular helper cell differentiation[J]. J Am Soc Nephrol, 2021, 32(10): 2542-2560. DOI: 10.1681/ASN.2021010098.
    [4]
    MUÑOZ M, HEGAZY AN, BRUNNER TM, et al. Th2 cells lacking T-bet suppress naive and memory T cell responses via IL-10[J]. Proc Natl Acad Sci U S A, 2021, 118(6): e2002787118. DOI: 10.1073/pnas.2002787118.
    [5]
    ROMANO M, TUNG SL, SMYTH LA, et al. Treg therapy in transplantation: a general overview[J]. Transpl Int, 2017, 30(8): 745-753. DOI: 10.1111/tri.12909.
    [6]
    SCHWARZ C, MAHR B, MUCKENHUBER M, et al. In vivo Treg expansion under costimulation blockade targets early rejection and improves long-term outcome[J]. Am J Transplant, 2021, 21(11): 3765-3774. DOI: 10.1111/ajt.16724.
    [7]
    ZHAO J, JIANG L, UEHARA M, et al. ACTH treatment promotes murine cardiac allograft acceptance[J]. JCI Insight, 2021, 6(13): e143385. DOI: 10.1172/jci.insight.143385.
    [8]
    TREVELIN SC, ZAMPETAKI A, SAWYER G, et al. Nox2-deficient Tregs improve heart transplant outcomes via their increased graft recruitment and enhanced potency[J]. JCI Insight, 2021, 6(18): e149301. DOI: 10.1172/jci.insight.149301.
    [9]
    HIRAI T, RAMOS TL, LIN PY, et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance[J]. J Clin Invest, 2021, 131(8): e139991. DOI: 10.1172/JCI139991.
    [10]
    SCHMITZ R, FITCH ZW, SCHRODER PM, et al. B cells in transplant tolerance and rejection: friends or foes?[J]. Transpl Int, 2020, 33(1): 30-40. DOI: 10.1111/tri.13549.
    [11]
    ASANO Y, DACCACHE J, JAIN D, et al. Innate-like self-reactive B cells infiltrate human renal allografts during transplant rejection[J]. Nat Commun, 2021, 12(1): 4372. DOI: 10.1038/s41467-021-24615-6.
    [12]
    ZENG F, CHEN Z, CHEN R, et al. Graft-derived extracellular vesicles transported across subcapsular sinus macrophages elicit B cell alloimmunity after transplantation[J]. Sci Transl Med, 2021, 13(585): eabb0122. DOI: 10.1126/scitranslmed.abb0122.
    [13]
    WANG G, ZOU D, WANG Y, et al. IRF4 ablation in B cells abrogates allogeneic B cell responses and prevents chronic transplant rejection[J]. J Heart Lung Transplant, 2021, 40(10): 1122-1132. DOI: 10.1016/j.healun.2021.06.008.
    [14]
    LI W, WANG D, YUE R, et al. Gut microbes enlarged the protective effect of transplanted regulatory B cells on rejection of cardiac allografts[J]. J Heart Lung Transplant, 2021, 40(12): 1502-1516. DOI: 10.1016/j.healun.2021.08.008.
    [15]
    WANG B, ZHOU Q, LI A, et al. Preventing alloimmune rejection using circular RNA FSCN1-silenced dendritic cells in heart transplantation[J]. J Heart Lung Transplant, 2021, 40(7): 584-594. DOI: 10.1016/j.healun.2021.03.025.
    [16]
    ZHAO J, QUE W, DU X, et al. Monotherapy with anti-CD70 antibody causes long-term mouse cardiac allograft acceptance with induction of tolerogenic dendritic cells[J]. Front Immunol, 2021, 11: 555996. DOI: 10.3389/fimmu.2020.555996.
    [17]
    USUELLI V, BEN NASR M, D'ADDIO F, et al. MiR-21 antagonism reprograms macrophage metabolism and abrogates chronic allograft vasculopathy[J]. Am J Transplant, 2021, 21(10): 3280-3295. DOI: 10.1111/ajt.16581.
    [18]
    LIN CM, GILL RG, MEHRAD B. The natural killer cell activating receptor, NKG2D, is critical to antibody-dependent chronic rejection in heart transplantation[J]. Am J Transplant, 2021, 21(11): 3550-3560. DOI: 10.1111/ajt.16690.
    [19]
    ZHANG W, LI J, QI G, et al. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy[J]. J Transl Med, 2018, 16(1): 19. DOI: 10.1186/s12967-018-1395-9.
    [20]
    SCHEURER J, KITT K, HUBER HJ, et al. Graft-versus-host disease prevention by in vitro-generated myeloid-derived suppressor cells is exclusively mediated by the CD11b+CD11c+ MDSC subpopulation[J]. Front Immunol, 2021, 12: 754316. DOI: 10.3389/fimmu.2021.754316.
    [21]
    LI J, TU G, ZHANG W, et al. CHBP induces stronger immunosuppressive CD127+ M-MDSC via erythropoietin receptor[J]. Cell Death Dis, 2021, 12(2): 177. DOI: 10.1038/s41419-021-03448-7.
    [22]
    MARSHALL PL, NAGY N, KABER G, et al. Hyaluronan synthesis inhibition impairs antigen presentation and delays transplantation rejection[J]. Matrix Biol, 2021, 96: 69-86. DOI: 10.1016/j.matbio.2020.12.001.
    [23]
    SCHMITZ R, FITCH ZW, SCHRODER PM, et al. C3 complement inhibition prevents antibody-mediated rejection and prolongs renal allograft survival in sensitized non-human primates[J]. Nat Commun, 2021, 12(1): 5456. DOI: 10.1038/s41467-021-25745-7.
    [24]
    VAN DE WALLE I, SILENCE K, BUDDING K, et al. ARGX-117, a therapeutic complement inhibiting antibody targeting C2[J]. J Allergy Clin Immunol, 2021, 147(4): 1420-1429. DOI: 10.1016/j.jaci.2020.08.028.
    [25]
    HERR F, DESTERKE C, BARGIEL K, et al. The proliferation of belatacept-resistant T cells requires early IFNα pathway activation[J]. Am J Transplant, 2022, 22(2): 489-503. DOI: 10.1111/ajt.16811.
    [26]
    SUN H, HARTIGAN CR, CHEN CW, et al. TIGIT regulates apoptosis of risky memory T cell subsets implicated in belatacept-resistant rejection[J]. Am J Transplant, 2021, 21(10): 3256-3267. DOI: 10.1111/ajt.16571.
    [27]
    TSAI HI, WU Y, LIU X, et al. Engineered small extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating immune rejection[J]. Adv Sci (Weinh), 2022, 9(3): e2102634. DOI: 10.1002/advs.202102634.
    [28]
    DENG C, JIN Q, WU Y, et al. Immunosuppressive effect of PLGA-FK506-NPs in treatment of acute cardiac rejection via topical subcutaneous injection[J]. Drug Deliv, 2021, 28(1): 1759-1768. DOI: 10.1080/10717544.2021.1968978.
    [29]
    SHI Y, LU Y, ZHU C, et al. Targeted regulation of lymphocytic ER stress response with an overall immunosuppression to alleviate allograft rejection[J]. Biomaterials, 2021, 272: 120757. DOI: 10.1016/j.biomaterials.2021.120757.
    [30]
    PUIGMAL N, DOSTA P, SOLHJOU Z, et al. Microneedle-based local delivery of CCL22 and IL-2 enriches Treg homing to the skin allograft and enables temporal monitoring of immunotherapy efficacy[J]. Adv Funct Mater, 2021, 31(44): 2170324.
    [31]
    LI Z, LIU R, GUO Z, et al. Celastrol-based nanomedicine promotes corneal allograft survival[J]. J Nanobiotechnology, 2021, 19(1): 341. DOI: 10.1186/s12951-021-01079-w.
    [32]
    SIREN EMJ, LUO HD, TAM F, et al. Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers[J]. Nat Biomed Eng, 2021, 5(10): 1202-1216. DOI: 10.1038/s41551-021-00777-y.
    [33]
    JOH S, NA HK, SON JG, et al. Quantitative analysis of immunosuppressive drugs using tungsten disulfide nanosheet-assisted laser desorption ionization mass spectrometry[J]. ACS Nano, 2021, 15(6): 10141-10152. DOI: 10.1021/acsnano.1c02016.
    [34]
    GAO T, WU Y, WANG W, et al. Biomimetic glucan particles with aggregation-induced emission characteristics for noninvasive monitoring of transplant immune response[J]. ACS Nano, 2021, DOI: 10.1021/acsnano.1c03029[Epub ahead of print].
    [35]
    SNYDER ME, FINLAYSON MO, CONNORS TJ, et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation[J]. Sci Immunol, 2019, 4(33): eaav5581. DOI: 10.1126/sciimmunol.aav5581.
    [36]
    PROSSER A, HUANG WH, LIU L, et al. Dynamic changes to tissue-resident immunity after MHC-matched and MHC-mismatched solid organ transplantation[J]. Cell Rep, 2021, 35(7): 109141. DOI: 10.1016/j.celrep.2021.109141.
    [37]
    JIAO W, MARTINEZ M, ZUBER J, et al. PE-2: dynamic reconstitution of recipient resident memory T cell repertoire after human intestinal transplantation[J]. Transplantation, 2021, 105(7S): S29-S30. DOI: 10.1097/01.tp.0000757680.43181.b2.
    [38]
    WEINER J, SVETLICKY N, KANG J, et al. CD69+ resident memory T cells are associated with graft-versus-host disease in intestinal transplantation[J]. Am J Transplant, 2021, 21(5): 1878-1892. DOI: 10.1111/ajt.16405.
    [39]
    ABOU-DAYA KI, TIEU R, ZHAO D, et al. Resident memory T cells form during persistent antigen exposure leading to allograft rejection[J]. Sci Immunol, 2021, 6(57): eabc8122. DOI: 10.1126/sciimmunol.abc8122.
    [40]
    TIAN Q, ZHANG Z, TAN L, et al. Skin and heart allograft rejection solely by long-lived alloreactive TRM cells in skin of severe combined immunodeficient mice[J]. Sci Adv, 2022, 8(4): eabk0270. DOI: 10.1126/sciadv.abk0270.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (650) PDF downloads(194) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return