Volume 13 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Gao Weidong, Yang Longlong, Yin Qingchen. Research progress on the role of oxidative stress in ischemia-reperfusion injury of marginal donor liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 126-131. doi: 10.3969/j.issn.1674-7445.2022.01.019
Citation: Gao Weidong, Yang Longlong, Yin Qingchen. Research progress on the role of oxidative stress in ischemia-reperfusion injury of marginal donor liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 126-131. doi: 10.3969/j.issn.1674-7445.2022.01.019

Research progress on the role of oxidative stress in ischemia-reperfusion injury of marginal donor liver transplantation

doi: 10.3969/j.issn.1674-7445.2022.01.019
More Information
  • Corresponding author: Yin Qingchen, Email: yqc1909@163.com
  • Received Date: 2021-08-25
    Available Online: 2022-01-12
  • Publish Date: 2022-01-15
  • Common marginal donor liver mainly consists of fatty donor liver, elderly donor liver, small volume donor liver and liver graft from donation after cardiac death (DCD), etc. The application of marginal donor liver may resolve the severe shortage of donor liver to certain extent. Nevertheless, marginal donor liver yields a higher risk of ischemia-reperfusion injury (IRI) and causes more severe IRI than normal donor liver, which is a main cause for the failure of transplantation. In addition, oxidative stress is a major risk factor causing IRI of marginal donor liver. Therefore, how to mitigate oxidative stress and alleviate IRI of marginal donor liver has become a hot spot in clinical practice. Reactive oxygen species (ROS)-mediated oxidative stress occurs throughout the whole process of IRI. In this article, the role of oxidative stress in IRI of marginal donor liver transplantation and the ROS-targeted prevention and treatment were reviewed, aiming to provide reference for clinical practice.

     

  • loading
  • [1]
    GOLDARACENA N, CULLEN JM, KIM DS, et al. Expanding the donor pool for liver transplantation with marginal donors[J]. Int J Surg, 2020, 82S: 30-35. DOI: 10.1016/j.ijsu.2020.05.024.
    [2]
    高伟东, 冯赞杰, 彭慈军, 等. 高迁移率族蛋白B1与肝缺血再灌注损伤的关系[J]. 临床肝胆病杂志, 2019, 35(3): 669-671. DOI: 10.3969/j.issn.1001-5256.2019.03.049.

    GAO WD, FENG ZJ, PENG CJ, et al. Association between high-mobility group box B1 and hepatic ischemia-reperfusion injury[J]. J Clin Hepatol, 2019, 35(3): 669-671. DOI: 10.3969/j.issn.1001-5256.2019.03.049.
    [3]
    JIANG Y, HE X, SIMONARO CM, et al. Acid ceramidase protects against hepatic ischemia/reperfusion injury by modulating sphingolipid metabolism and reducing inflammation and oxidative stress[J]. Front Cell Dev Biol, 2021, 9: 633657. DOI: 10.3389/fcell.2021.633657.
    [4]
    GARZA-LOMBÓ C, PAPPA A, PANAYIOTIDIS MI, et al. Redox homeostasis, oxidative stress and mitophagy[J]. Mitochondrion, 2020, 51: 105-117. DOI: 10.1016/j.mito.2020.01.002.
    [5]
    CHEUNG EC, DENICOLA GM, NIXON C, et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer[J]. Cancer Cell, 2020, 37(2): 168-182. DOI: 10.1016/j.ccell.2019.12.012.
    [6]
    BAGATI A, MOPARTHY S, FINK EE, et al. KLF9-dependent ROS regulate melanoma progression in stage-specific manner[J]. Oncogene, 2019, 38(19): 3585-3597. DOI: 10.1038/s41388-019-0689-6.
    [7]
    GAO W, FENG Z, ZHANG S, et al. Anti-inflammatory and antioxidant effect of eucommia ulmoides polysaccharide in hepatic ischemia-reperfusion injury by regulating ROS and the TLR-4-NF-κB pathway[J]. Biomed Res Int, 2020: 1860637. DOI: 10.1155/2020/1860637.
    [8]
    DAR WA, SULLIVAN E, BYNON JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801. DOI: 10.1111/liv.14091.
    [9]
    YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.
    [10]
    赵英鹏, 李立, 陈刚, 等. 减体积肝移植在大鼠脂肪肝供肝肝移植模型中的应用[J]. 中国组织工程研究, 2018, 22(4): 582-586. DOI: 10.3969/j.issn.2095-4344.0094.

    ZHAO YP, LI L, CHEN G, et al. Reduced-size liver transplantation with fatty liver donors in a rat model[J]. Chin J Tissue Eng Res, 2018, 22(4): 582-586. DOI: 10.3969/j.issn.2095-4344.0094.
    [11]
    LAN X, ZHANG H, LI HY, et al. Feasibility of using marginal liver grafts in living donor liver transplantation[J]. World J Gastroenterol, 2018, 24(23): 2441-2456. DOI: 10.3748/wjg.v24.i23.2441.
    [12]
    LINARES I, HAMAR M, SELZNER N, et al. Steatosis in liver transplantation: current limitations and future strategies[J]. Transplantation, 2019, 103(1): 78-90. DOI: 10.1097/TP.0000000000002466.
    [13]
    LI J, WANG T, LIU P, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/Akt-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD[J]. Food Funct, 2021, 12(9): 3898-3918. DOI: 10.1039/d0fo02736g.
    [14]
    WU D, LIU Z, WANG Y, et al. Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway[J]. Oxid Med Cell Longev, 2021: 5599997. DOI: 10.1155/2021/5599997.
    [15]
    ZHAO WJ, BIAN YP, WANG QH, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress[J]. Acta Pharmacol Sin, 2021, DOI: 10.1038/s41401-021-00681-w[Epubaheadofprint].
    [16]
    YANG F, WANG S, LIU Y, et al. IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of Kupffer cells[J]. Free Radic Biol Med, 2018, 124: 395-407. DOI: 10.1016/j.freeradbiomed.2018.06.043.
    [17]
    FAN H, SHEN Y, REN Y, et al. Combined intake of blueberry juice and probiotics ameliorate mitochondrial dysfunction by activating SIRT1 in alcoholic fatty liver disease[J]. Nutr Metab (Lond), 2021, 18(1): 50. DOI: 10.1186/s12986-021-00554-3.
    [18]
    YANG X, LI C, NG KT, et al. IL-17a exacerbates hepatic ischemia-reperfusion injury in fatty liver by promoting neutrophil infiltration and mitochondria-driven apoptosis[J]. J Leukoc Biol, 2020, 108(5): 1603-1613. DOI: 10.1002/JLB.3MA0520-716R.
    [19]
    LI Y, SUN Y, ZANG Y, et al. GanMeijian ameliorates lipid accumulation and oxidative damage in alcoholic fatty liver disease in Wistar rats[J]. Life Sci, 2020, 255: 117721. DOI: 10.1016/j.lfs.2020.117721.
    [20]
    YANG Q, ZHAO ZZ, XIE J, et al. Senkyunolide I attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative, anti-inflammatory and anti-apoptotic pathways[J]. Int Immunopharmacol, 2021, 97: 107717. DOI: 10.1016/j.intimp.2021.107717.
    [21]
    ZHANG T, GU J, GUO J, et al. Renalase attenuates mouse fatty liver ischemia/reperfusion injury through mitigating oxidative stress and mitochondrial damage via activating SIRT1[J]. Oxid Med Cell Longev, 2019: 7534285. DOI: 10.1155/2019/7534285.
    [22]
    MILLARE B, O'ROURKE B, TRAYANOVA N. Hydrogen peroxide diffusion and scavenging shapes mitochondrial network instability and failure by sensitizing ROS-induced ROS release[J]. Sci Rep, 2020, 10(1): 15758. DOI: 10.1038/s41598-020-71308-z.
    [23]
    LI Z, CHEN L, CHU H, et al. Estrogen alleviates hepatocyte necroptosis depending on GPER in hepatic ischemia reperfusion injury[J]. J Physiol Biochem, 2021, DOI: 10.1007/s13105-021-00846-5[Epubaheadofprint].
    [24]
    ZHANG J, REN Y, BI J, et al. Involvement of kindlin-2 in irisin's protection against ischaemia reperfusion-induced liver injury in high-fat diet-fed mice[J]. J Cell Mol Med, 2020, 24(22): 13081-13092. DOI: 10.1111/jcmm.15910.
    [25]
    YANG F, SHANG L, WANG S, et al. TNFα-mediated necroptosis aggravates ischemia-reperfusion injury in the fatty liver by regulating the inflammatory response[J]. Oxid Med Cell Longev, 2019: 2301903. DOI: 10.1155/2019/2301903.
    [26]
    THURMAN RG, GAO W, CONNOR HD, et al. Role of Kupffer cells in failure of fatty livers following liver transplantation and alcoholic liver injury[J]. J Gastroenterol Hepatol, 1995, 10 (Suppl 1): S24-S30. DOI: 10.1111/j.1440-1746.1995.tb01791.x.
    [27]
    GAO Q, MULVIHILL MS, SCHEUERMANN U, et al. Improvement in liver transplant outcomes from older donors: a US national analysis[J]. Ann Surg, 2019, 270(2): 333-339. DOI: 10.1097/SLA.0000000000002876.
    [28]
    MUSTIAN MN, SHELTON BA, MACLENNAN PA, et al. Ethnic and age disparities in outcomes among liver transplant waitlist candidates[J]. Transplantation, 2019, 103(7): 1425-1432. DOI: 10.1097/TP.0000000000002523.
    [29]
    KAN C, UNGELENK L, LUPP A, et al. Ischemia-reperfusion injury in aged livers-the energy metabolism, inflammatory response, and autophagy[J]. Transplantation, 2018, 102(3): 368-377. DOI: 10.1097/TP.0000000000001999.
    [30]
    HUNT NJ, KANG SWS, LOCKWOOD GP, et al. Hallmarks of aging in the liver[J]. Comput Struct Biotechnol J, 2019, 17: 1151-1161. DOI: 10.1016/j.csbj.2019.07.021.
    [31]
    OKAYA T, BLANCHARD J, SCHUSTER R, et al. Age-dependent responses to hepatic ischemia/reperfusion injury[J]. Shock, 2005, 24(5): 421-427. DOI: 10.1097/01.shk.0000181282.14050.11.
    [32]
    PARK Y, HIROSE R, COATNEY JL, et al. Ischemia-reperfusion injury is more severe in older versus young rat livers[J]. J Surg Res, 2007, 137(1): 96-102. DOI: 10.1016/j.jss.2006.08.013.
    [33]
    SRIVASTAVA A, BARTH E, ERMOLAEVA MA, et al. Tissue-specific gene expression changes are associated with aging in mice[J]. Genom Proteom Bioinform, 2020, 18(4): 430-442. DOI: 10.1016/j.gpb.2020.12.001.
    [34]
    QI R, JIANG R, XIAO H, et al. Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor[J]. Life Sci, 2020, 254: 117776. DOI: 10.1016/j.lfs.2020.117776.
    [35]
    KIREEV RA, CUESTA S, IBARROLA C, et al. Age-related differences in hepatic ischemia/reperfusion: gene activation, liver injury, and protective effect of melatonin[J]. J Surg Res, 2012, 178(2): 922-934. DOI: 10.1016/j.jss.2012.04.060.
    [36]
    ZAOUALÍ MA, REITER RJ, PADRISSA-ALTÉS S, et al. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury[J]. J Pineal Res, 2011, 50(2): 213-221. DOI: 10.1111/j.1600-079X.2010.00831.x.
    [37]
    CHAN KM, WANG YC, WU TH, et al. Encouraging split liver transplantation for two adult recipients to mitigate the high incidence of wait-list mortality in the setting of extreme shortage of deceased donors[J]. J Clin Med, 2019, 8(12): 2095. DOI: 10.3390/jcm8122095.
    [38]
    BRUNNER SM, BRENNFLECK FW, JUNGER H, et al. Successful auxiliary two-staged partial resection liver transplantation (ASPIRE-LTx) for end-stage liver disease to avoid small-for-size situations[J]. BMC Surg, 2021, 21(1): 166. DOI: 10.1186/s12893-021-01167-6.
    [39]
    LAU NS, JACQUES A, MCCAUGHAN G, et al. Addressing the challenges of split liver transplantation through technical advances. a systematic review[J]. Transplant Rev (Orlando), 2021, 35(3): 100627. DOI: 10.1016/j.trre.2021.100627.
    [40]
    ELIAS-MIRÓ M, JIMÉNEZ-CASTRO MB, RODÉS J, et al. Current knowledge on oxidative stress in hepatic ischemia/reperfusion[J]. Free Radic Res, 2013, 47(8): 555-568. DOI: 10.3109/10715762.2013.811721.
    [41]
    ZHONG Z, CONNOR HD, FROH M, et al. Free radical-dependent dysfunction of small-for-size rat liver grafts: prevention by plant polyphenols[J]. Gastroenterology, 2005, 129(2): 652-664. DOI: 10.1016/j.gastro.2005.05.060.
    [42]
    CUI YY, QIAN JM, YAO AH, et al. SOD mimetic improves the function, growth, and survival of small-size liver grafts after transplantation in rats[J]. Transplantation, 2012, 94(7): 687-694. DOI: 10.1097/TP.0b013e3182633478.
    [43]
    ZHANG B, LIU QH, ZHOU CJ, et al. Protective effect of eNOS overexpression against ischemia/reperfusion injury in small-for-size liver transplantation[J]. Exp Ther Med, 2016, 12(5): 3181-3188. DOI: 10.3892/etm.2016.3762.
    [44]
    MULLER X, MOHKAM K, MUELLER M, et al. Hypothermic oxygenated perfusion versus normothermic regional perfusion in liver transplantation from controlled donation after circulatory death: first international comparative study[J]. Ann Surg, 2020, 272(5): 751-758. DOI: 10.1097/SLA.0000000000004268.
    [45]
    TAYLOR R, ALLEN E, RICHARDS JA, et al. Survival advantage for patients accepting the offer of a circulatory death liver transplant[J]. J Hepatol, 2019, 70(5): 855-865. DOI: 10.1016/j.jhep.2018.12.033.
    [46]
    魏宝龙, 王政禄, 侯文, 等. 功能性热缺血时间对肝移植大鼠肝组织炎症细胞因子的影响[J]. 中华器官移植杂志, 2019, 40(3): 170-174. DOI: 10.3760/cma.j.issn.0254-1785.2019.03.011.

    WEI BL, WANG ZL, HOU W, et al. Changes of inflammatory cytokines in rat liver transplantation model under different functional warm ischemic durations[J]. Chin J Organ Transplant, 2019, 40(3): 170-174. DOI: 10.3760/cma.j.issn.0254-1785.2019.03.011.
    [47]
    LEVESQUE E, SALLOUM C, FERAY C, et al. The utility of ECMO, not just after but also during liver transplantation[J]. Transplantation, 2019, 103(10): e319-e320. DOI: 10.1097/TP.0000000000002844.
    [48]
    SUN XY, DONG JH, QIN KE, et al. Single-center study on transplantation of livers donated after cardiac death: a report of 6 cases[J]. Exp Ther Med, 2016, 11(3): 988-992. DOI: 10.3892/etm.2016.3001.
    [49]
    JIMÉNEZ-GALANES S, MENEU-DIAZ MJ, ELOLA-OLASO AM, et al. Liver transplantation using uncontrolled non-heart-beating donors under normothermic extracorporeal membrane oxygenation[J]. Liver Transpl, 2009, 15(9): 1110-1118. DOI: 10.1002/lt.21867.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (409) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return