Volume 13 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Li Xiaoyan, Xi Rui, Bai Hai. Research progress on pathogenesis of skin graft-versus-host disease[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 120-125. doi: 10.3969/j.issn.1674-7445.2022.01.018
Citation: Li Xiaoyan, Xi Rui, Bai Hai. Research progress on pathogenesis of skin graft-versus-host disease[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 120-125. doi: 10.3969/j.issn.1674-7445.2022.01.018

Research progress on pathogenesis of skin graft-versus-host disease

doi: 10.3969/j.issn.1674-7445.2022.01.018
More Information
  • Corresponding author: Xi Rui, Email: xirui36@qq.com; Bai Hai, Email: baihai@tom.com
  • Received Date: 2021-09-12
    Available Online: 2022-01-12
  • Publish Date: 2022-01-15
  • Graft-versus-host disease (GVHD) is a major cause that prevents widespread application of allogeneic hematopoietic stem cell transplantation. GVHD is a complication that can affect all systems of the body, such as skin, liver, lung and gastrointestinal tract, among which skin is the most vulnerable organ. At present, the pathogenesis of skin GVHD has not been fully elucidated, and no effective treatment has been established. Severe or extensive chronic GVHD significantly affects the quality of life of the recipients. Consequently, it is urgent to unravel the pathogenesis of skin GVHD and explore novel therapeutic treatment. Cytokines, such as interleukin (IL)-22, IL-17, IL-6 and interferon (IFN)-γ, have been proven to play pivotal roles in the progression of skin GVHD. Nevertheless, the specific mechanism remains elusive. In this article, research progresses at home and abroad on the mechanism underlying the roles of these cytokines in skin GVHD were reviewed, aiming to provide novel ideas for the prevention and treatment of skin GVHD.

     

  • loading
  • [1]
    FLOWERS ME, INAMOTO Y, CARPENTER PA, et al. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria[J]. Blood, 2011, 117(11): 3214-3219. DOI: 10.1182/blood-2010-08-302109.
    [2]
    STROBL J, PANDEY RV, KRAUSGRUBER T, et al. Anti-apoptotic molecule BCL2 is a therapeutic target in steroid-refractory graft-versus-host disease[J]. J Invest Dermatol, 2020, 140(11): 2188-2198. DOI: 10.1016/j.jid.2020.02.029.
    [3]
    ZHANG P, YANG S, ZOU Y, et al. NK cell predicts the severity of acute graft-versus-host disease in patients after allogeneic stem cell transplantation using antithymocyte globulin (ATG) in pretreatment scheme[J]. BMC Immunol, 2019, 20(1): 46. DOI: 10.1186/s12865-019-0326-8.
    [4]
    ZHOU Z, SHANG T, LI X, et al. Protecting intestinal microenvironment alleviates acute graft-versus-host disease[J]. Front Physiol, 2021, 11: 608279. DOI: 10.3389/fphys.2020.608279.
    [5]
    KEIR M, YI Y, LU T, et al. The role of IL-22 in intestinal health and disease[J]. J Exp Med, 2020, 217(3): e20192195. DOI: 10.1084/jem.20192195.
    [6]
    OUYANG W, O'GARRA A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation[J]. Immunity, 2019, 50(4): 871-891. DOI: 10.1016/j.immuni.2019.03.020.
    [7]
    SABIHI M, BÖTTCHER M, PELCZAR P, et al. Microbiota-dependent effects of IL-22[J]. Cells, 2020, 9(10): 2205. DOI: 10.3390/cells9102205.
    [8]
    FURUE M. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: pathogenic implications in atopic dermatitis[J]. Int J Mol Sci, 2020, 21(15): 5382. DOI: 10.3390/ijms21155382.
    [9]
    OWEN KL, BROCKWELL NK, PARKER BS. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression[J]. Cancers (Basel), 2019, 11(12): 2002. DOI: 10.3390/cancers11122002.
    [10]
    SA SM, VALDEZ PA, WU J, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis[J]. J Immunol, 2007, 178(4): 2229-2240. DOI: 10.4049/jimmunol.178.4.2229.
    [11]
    GARTLAN KH, BOMMIASAMY H, PAZ K, et al. A critical role for donor-derived IL-22 in cutaneous chronic GVHD[J]. Am J Transplant, 2018, 18(4): 810-820. DOI: 10.1111/ajt.14513.
    [12]
    PAN B, XIA F, WU Y, et al. Recipient-derived IL-22 alleviates murine acute graft-versus-host disease in association with reduced activation of antigen presenting cells[J]. Cytokine, 2018, 111: 33-40. DOI: 10.1016/j.cyto.2018.08.010.
    [13]
    MCGEACHY MJ, CUA DJ, GAFFEN SL. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4): 892-906. DOI: 10.1016/j.immuni.2019.03.021.
    [14]
    LIU T, LI S, YING S, et al. The IL-23/IL-17 pathway in inflammatory skin diseases: from bench to bedside[J]. Front Immunol, 2020, 11: 594735. DOI: 10.3389/fimmu.2020.594735.
    [15]
    LAI P, CHEN X, GUO L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD[J]. J Hematol Oncol, 2018, 11(1): 135. DOI: 10.1186/s13045-018-0680-7.
    [16]
    HOTTA M, YOSHIMURA H, SATAKE A, et al. GM-CSF therapy inhibits chronic graft-versus-host disease via expansion of regulatory T cells[J]. Eur J Immunol, 2019, 49(1): 179-191. DOI: 10.1002/eji.201847684.
    [17]
    ITO R, KATANO I, OTSUKA I, et al. Exacerbation of pathogenic Th17-cell-mediated cutaneous graft-versus-host-disease in human IL-1β and IL-23 transgenic humanized mice[J]. Biochem Biophys Res Commun, 2019, 516(2): 480-485. DOI: 10.1016/j.bbrc.2019.06.094.
    [18]
    CHEN X, VODANOVIC-JANKOVIC S, JOHNSON B, et al. Absence of regulatory T-cell control of Th1 and Th17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease[J]. Blood, 2007, 110(10): 3804-3813. DOI: 10.1182/blood-2007-05-091074.
    [19]
    KLIMCZAK A, SUCHNICKI K, SEDZIMIRSKA M, et al. Diverse activity of IL-17+ cells in chronic skin and mucosa graft-versus-host disease[J]. Arch Immunol Ther Exp (Warsz), 2019, 67(5): 311-323. DOI: 10.1007/s00005-019-00549-2.
    [20]
    QING H, DESROULEAUX R, ISRANI-WINGER K, et al. Origin and function of stress-induced IL-6 in murine models[J]. Cell, 2020, 182(6): 1660. DOI: 10.1016/j.cell.2020.08.044.
    [21]
    KAUR S, BANSAL Y, KUMAR R, et al. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors[J]. Bioorg Med Chem, 2020, 28(5): 115327. DOI: 10.1016/j.bmc.2020.115327.
    [22]
    GRECO R, LORENTINO F, NITTI R, et al. Interleukin-6 as biomarker for acute GVHD and survival after allogeneic transplant with post-transplant cyclophosphamide[J]. Front Immunol, 2019, 10: 2319. DOI: 10.3389/fimmu.2019.02319.
    [23]
    LIN J, LI X, XIA J. Th17 cells in neuromyelitis optica spectrum disorder: a review[J]. Int J Neurosci, 2016, 126(12): 1051-1060. DOI: 10.3109/00207454.2016.1163550.
    [24]
    CHEN X, DAS R, KOMOROWSKI R, et al. Blockade of interleukin-6 signaling augments regulatory T-cell reconstitution and attenuates the severity of graft-versus-host disease[J]. Blood, 2009, 114(4): 891-900. DOI: 10.1182/blood-2009-01-197178.
    [25]
    TAWARA I, KOYAMA M, LIU C, et al. Interleukin-6 modulates graft-versus-host responses after experimental allogeneic bone marrow transplantation[J]. Clin Cancer Res, 2011, 17(1): 77-88. DOI: 10.1158/1078-0432.CCR-10-1198.
    [26]
    TVEDT THA, HOVLAND R, TSYKUNOVA G, et al. A pilot study of single nucleotide polymorphisms in the interleukin-6 receptor and their effects on pre- and post-transplant serum mediator level and outcome after allogeneic stem cell transplantation[J]. Clin Exp Immunol, 2018, 193(1): 130-141. DOI: 10.1111/cei.13124.
    [27]
    JIANG Z, LIAO R, LV J, et al. IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells[J]. Leukemia, 2021, 35(5): 1380-1391. DOI: 10.1038/s41375-020-01085-1.
    [28]
    BAAKE T, JÖRß K, SUENNEMANN J, et al. The glucocorticoid receptor in recipient cells keeps cytokine secretion in acute graft-versus-host disease at bay[J]. Oncotarget, 2018, 9(21): 15437-15450. DOI: 10.18632/oncotarget.24602.
    [29]
    WILKINSON AN, CHANG K, KUNS RD, et al. IL-6 dysregulation originates in dendritic cells and mediates graft-versus-host disease via classical signaling[J]. Blood, 2019, 134(23): 2092-2106. DOI: 10.1182/blood.2019000396.
    [30]
    JORGOVANOVIC D, SONG M, WANG L, et al. Roles of IFN-γ in tumor progression and regression: a review[J]. Biomark Res, 2020, 8: 49. DOI: 10.1186/s40364-020-00228-x.
    [31]
    IVASHKIV LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(9): 545-558. DOI: 10.1038/s41577-018-0029-z.
    [32]
    BURKE JD, YOUNG HA. IFN-γ: a cytokine at the right time, is in the right place[J]. Semin Immunol, 2019, 43: 101280. DOI: 10.1016/j.smim.2019.05.002.
    [33]
    TAKAHASHI S, HASHIMOTO D, HAYASE E, et al. Ruxolitinib protects skin stem cells and maintains skin homeostasis in murine graft-versus-host disease[J]. Blood, 2018, 131(18): 2074-2085. DOI: 10.1182/blood-2017-06-792614.
    [34]
    SAITO A, ICHIMURA Y, KUBOTA N, et al. IFN-γ-stimulated apoptotic keratinocytes promote sclerodermatous changes in chronic graft-versus-host disease[J]. J Invest Dermatol, 2021, 141(6): 1473-1481. DOI: 10.1016/j.jid.2020.09.033.
    [35]
    ALI H, SALHOTRA A, MODI B, et al. Ruxolitinib for the treatment of graft-versus-host disease[J]. Expert Rev Clin Immunol, 2020, 16(4): 347-359. DOI: 10.1080/1744666X.2020.1740592.
    [36]
    CHOI J, COOPER ML, STASER K, et al. Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease[J]. Leukemia, 2018, 32(11): 2483-2494. DOI: 10.1038/s41375-018-0123-z.
    [37]
    KATTNER AS, HOLLER E, HOLLER B, et al. IL6-receptor antibody tocilizumab as salvage therapy in severe chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a retrospective analysis[J]. Ann Hematol, 2020, 99(4): 847-853. DOI: 10.1007/s00277-020-03968-w.
    [38]
    STRATTAN E, PALANIYANDI S, KUMARI R, et al. Mast cells are mediators of fibrosis and effector cell recruitment in dermal chronic graft-vs. -host disease[J]. Front Immunol, 2019, 10: 2470. DOI: 10.3389/fimmu.2019.02470.
    [39]
    KUBOTA N, SAITO A, TANAKA R, et al. Langerhans cells suppress CD8+ T cells in situ during mucocutaneous acute graft-versus-host disease[J]. J Invest Dermatol, 2021, 141(5): 1177-1187. DOI: 10.1016/j.jid.2020.09.018.
    [40]
    ONO R, WATANABE T, KAWAKAMI E, et al. Co-activation of macrophages and T cells contribute to chronic GVHD in human IL-6 transgenic humanised mouse model[J]. EBioMedicine, 2019, 41: 584-596. DOI: 10.1016/j.ebiom.2019.02.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (400) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return