Volume 12 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Luo Zihuan, Sun Qiquan. Research highlights of renal transplantation in 2020: voice from China[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 169-176. doi: 10.3969/j.issn.1674-7445.2021.02.006
Citation: Luo Zihuan, Sun Qiquan. Research highlights of renal transplantation in 2020: voice from China[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 169-176. doi: 10.3969/j.issn.1674-7445.2021.02.006

Research highlights of renal transplantation in 2020: voice from China

doi: 10.3969/j.issn.1674-7445.2021.02.006
More Information
  • Corresponding author: Sun Qiquan E-mail: sunqiq@mail.sysu.edu.cn
  • Received Date: 2021-01-12
    Available Online: 2021-03-19
  • Publish Date: 2021-03-15
  • Renal transplantation is the optimal approach to improve the quality of life and restore normal life for patients with end-stage renal diseases.With the development of medical techniques and immunosuppressants, the shortterm survival of renal graft has been significantly prolonged, whereas the long-term survival remains to be urgently solved.Renal ischemia-reperfusion injury (IRI), acute rejection, chronic renal allograft dysfunction, renal fibrosis and other factors are still the major problems affecting the survival of renal graft.Relevant researches have always been hot spots in the field of renal transplantation.Meantime, 2020 is an extraordinary year.The novel coronavirus pneumonia (COVID-19) pandemic severely affects the development of all walks of life.Researches related to renal transplantation have also sprung up.In this article, the frontier hotspots of clinical and basic studies related to renal transplantation and the COVID-19 related researches in the field of renal transplantation in China were reviewed, aiming to provide novel therapeutic ideas and strategies.

     

  • loading
  • [1]
    KALANTAR-ZADEH K, LI PK. Strategies to prevent kidney disease and its progression[J]. Nat Rev Nephrol, 2020, 16(3): 129-130. DOI: 10.1038/s41581-020-0253-1.
    [2]
    KALANTAR-ZADEH K, WIGHTMAN A, LIAO S. Ensuring choice for people with kidney failure-dialysis, supportive care, and hope[J]. N Engl J Med, 2020, 383(2): 99. DOI: 10.1056/NEJMp2001794.
    [3]
    CHEN N, HAO C, LIU BC, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis[J]. N Engl J Med, 2019, 381(11): 1011-1022. DOI: 10.1056/NEJMoa1901713.
    [4]
    LOUPY A, AUBERT O, ORANDI BJ, et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study[J]. BMJ, 2019, 366: l4923. DOI: 10.1136/bmj.l4923.
    [5]
    MAGEE CN, MURAKAMI N, BORGES TJ, et al. Notch-1 inhibition promotes immune regulation in transplantation via regulatory T cell-dependent mechanisms[J]. Circulation, 2019, 140(10): 846-863. DOI: 10.1161/CIRCULATIONAHA.119.040563.
    [6]
    EVREN E, RINGQVIST E, TRIPATHI KP, et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity[J]. Immunity, 2021, 54(2): 259-275. DOI: 10.1016/j.immuni.2021.12.003.
    [7]
    FERREIRA LMR, MULLER YD, BLUESTONE JA, et al. Next-generation regulatory T cell therapy[J]. Nat Rev Drug Discov, 2019, 18(10): 749-769. DOI: 10.1038/s41573-019-0041-4.
    [8]
    JORGENSEN AM, YOO JJ, ATALA A. Solid organ bioprinting: strategies to achieve organ function[J]. Chem Rev, 2020, 120(19): 11093-11127. DOI: 10.1021/acs.chemrev.0c00145.
    [9]
    STEWART BJ, FERDINAND JR, CLATWORTHY MR. Using single-cell technologies to map the human immune system-implications for nephrology[J]. Nat Rev Nephrol, 2020, 16(2): 112-128. DOI: 10.1038/s41581-019-0227-3.
    [10]
    LIU Y, HU J, LIU D, et al. Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection[J]. Theranostics, 2020, 10(19): 8851-8862. DOI: 10.7150/thno.48201.
    [11]
    FERNANDEZ DM, GIANNARELLI C. Mapping transplant arteriosclerosis cell-by-cell: a path to new immune insights[J]. Circ Res, 2020, 127(8): 994-996. DOI: 10.1161/CIRCRESAHA.120.317907.
    [12]
    MASOUD AG, LIN J, AZAD AK, et al. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury[J]. J Clin Invest, 2020, 130(1): 94-107. DOI: 10.1172/JCI128469.
    [13]
    CAI J, DENG J, GU W, et al. Impact of local alloimmunity and recipient cells in transplant arteriosclerosis[J]. Circ Res, 2020, 127(8): 974-993. DOI: 10.1161/CIRCRESAHA.119.316470.
    [14]
    WANG D, WANG J, BAI L, et al. Long-term expansion of pancreatic islet organoids from resident procr+ progenitors[J]. Cell, 2020, 180(6): 1198-1211. DOI: 10.1016/j.cell.2020.02.048.
    [15]
    CIPPÀ PE, LIU J, SUN B, et al. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation[J]. Nat Commun, 2019, 10(1): 1157. DOI: 10.1038/s41467-019-09092-2.
    [16]
    LIU L, FANG C, FU W, et al. Endothelial cell-derived interleukin-18 released during ischemia reperfusion injury selectively expands T peripheral helper cells to promote alloantibody production[J]. Circulation, 2020, 141(6): 464-478. DOI: 10.1161/CIRCULATIONAHA.119.042501.
    [17]
    LI X, LIAO J, SU X, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1[J]. Theranostics, 2020, 10(21): 9561-9578. DOI: 10.7150/thno.42153.
    [18]
    ZHOU C, ZHOU L, LIU J, et al. Kidney extracellular matrix hydrogel enhances therapeutic potential of adipose-derived mesenchymal stem cells for renal ischemia reperfusion injury[J]. Acta Biomater, 2020, 115: 250-263. DOI: 10.1016/j.actbio.2020.07.056.
    [19]
    ZHU J, ZHANG G, SONG Z, et al. Protein kinase C-δ mediates kidney tubular injury in cold storageassociated kidney transplantation[J]. J Am Soc Nephrol, 2020, 31(5): 1050-1065. DOI: 10.1681/ASN.2019101060.
    [20]
    NA N, ZHAO D, ZHANG J, et al. Carbamylated erythropoietin regulates immune responses and promotes long-term kidney allograft survival through activation of PI3K/Akt signaling[J]. Signal Transduct Target Ther, 2020, 5(1): 194. DOI: 10.1038/s41392-020-00232-5.
    [21]
    XU Z, TSAI HI, XIAO Y, et al. Engineering programmed death ligand-1/cytotoxic T-lymphocyte-associated antigen-4 dual-targeting nanovesicles for immunosuppressive therapy in transplantation[J]. ACS Nano, 2020, 14(7): 7959-7969. DOI: 10.1021/acsnano.9b09065.
    [22]
    WANG Z, JIANG S, LI S, et al. Targeted galectin-7 inhibition with ultrasound microbubble targeted gene therapy as a sole therapy to prevent acute rejection following heart transplantation in a rodent model[J]. Biomaterials, 2020, 263: 120366. DOI: 10.1016/j.biomaterials.2020.120366.
    [23]
    YI L, CHEN Y, JIN Q, et al. Antagomir-155 attenuates acute cardiac rejection using ultrasound targeted microbubbles destruction[J]. Adv Healthc Mater, 2020, 9(14): e2000189. DOI: 10.1002/adhm.202000189.
    [24]
    LIAO T, LIU X, REN J, et al. Noninvasive and quantitative measurement of C4d deposition for the diagnosis of antibody-mediated cardiac allograft rejection[J]. EBioMedicine, 2018, 37: 236-245. DOI: 10.1016/j.ebiom.2018.10.061.
    [25]
    LIAO T, ZHANG Y, REN J, et al. Noninvasive quantification of intrarenal allograft C4d deposition with targeted ultrasound imaging[J]. Am J Transplant, 2019, 19(1): 259-268. DOI: 10.1111/ajt.15105.
    [26]
    LIAO T, LI Q, ZHANG Y, et al. Precise treatment of acute antibody-mediated cardiac allograft rejection in rats using C4d-targeted microbubbles loaded with nitric oxide[J]. J Heart Lung Transplant, 2020, 39(5): 481-490. DOI: 10.1016/j.healun.2020.02.002.
    [27]
    LUO Z, LIAO T, ZHANG Y, et al. Triptolide attenuates transplant vasculopathy through multiple pathways[J]. Front Immunol, 2020, 11: 612. DOI: 10.3389/fimmu.2020.00612.
    [28]
    RODRIGUEZ-RODRIGUEZ AE, DONATE-CORREA J, ROVIRA J, et al. Inhibition of the mTOR pathway: a new mechanism of β cell toxicity induced by tacrolimus[J]. Am J Transplant, 2019, 19(12): 3240-3249. DOI: 10.1111/ajt.15483.
    [29]
    TRIÑANES J, TEN DIJKE P, GROEN N, et al. Tacrolimus-induced BMP/SMAD signaling associates with metabolic stress-activated Foxo1 to trigger β-cell failure[J]. Diabetes, 2020, 69(2): 193-204. DOI: 10.2337/db19-0828.
    [30]
    LING Q, HUANG H, HAN Y, et al. The tacrolimusinduced glucose homeostasis imbalance in terms of the liver: from bench to bedside[J]. Am J Transplant, 2020, 20(3): 701-713. DOI: 10.1111/ajt.15665.
    [31]
    JIAO W, ZHANG Z, XU Y, et al. Butyric acid normalizes hyperglycemia caused by the tacrolimus-induced gut microbiota[J]. Am J Transplant, 2020, 20(9): 2413-2424. DOI: 10.1111/ajt.15880.
    [32]
    WANG XD, LIU JP, SONG TR, et al. Kidney transplantation from HBsAg+living donors to HBsAgrecipients: clinical outcomes at a high-volume center in China[J]. Clin Infect Dis, 2020: ciaa178. DOI: 10.1093/cid/ciaa178.
    [33]
    ZHU L, FU C, CHEN S, et al. Successful singlekidney transplantation in adult recipients using pediatric donors aged 8 to 36 months: comparable outcomes with those using pediatric donors aged >3 years[J]. Transplantation, 2019, 103(11): 2388-2396. DOI: 10.1097/TP.0000000000002618.
    [34]
    HE X, CHEN G, ZHU Z, et al. The first case of ischemiafree kidney transplantation in humans[J]. Front Med (Lausanne), 2019, 6: 276. DOI: 10.3389/fmed.2019.00276.
    [35]
    HURKMANS DP, VERHOEVEN JGHP, DE LEUR K, et al. Donor-derived cell-free DNA detects kidney transplant rejection during nivolumab treatment[J]. J Immunother Cancer, 2019, 7(1): 182. DOI: 10.1186/s40425-019-0653-6.
    [36]
    XIAO H, GAO F, PANG Q, et al. Diagnostic accuracy of donor-derived cell-free DNA in renal-allograft rejection: a Meta-analysis[J]. Transplantation, 2020, DOI: 10.1097/TP.0000000000003443 [Epub ahead of print].
    [37]
    CHEN XT, CHEN WF, LI J, et al. Urine donor-derived cell-free DNA helps discriminate BK polyomavirusassociated nephropathy in kidney transplant recipients with BK polyomavirus infection[J]. Front Immunol, 2020, 11: 1763. DOI: 10.3389/fimmu.2020.01763.
    [38]
    HAN F, WAN S, SUN Q, et al. Donor plasma mitochondrial DNA is correlated with posttransplant renal allograft function[J]. Transplantation, 2019, 103(11): 2347-2358. DOI: 10.1097/TP.0000000000002598.
    [39]
    ADAM BA, KIKIC Z, WAGNER S, et al. Intragraft gene expression in native kidney BK virus nephropathy versus T cell-mediated rejection: prospects for molecular diagnosis and risk prediction[J]. Am J Transplant, 2020, 20(12): 3486-3501. DOI: 10.1111/ajt.15980.
    [40]
    LIU Y, ZHOU S, HU J, et al. Characterization of aberrant pathways activation and immune microenviroment of BK virus associated nephropathy[J]. Aging (Albany NY), 2020, 12(14): 14434-14451. DOI: 10.18632/aging.103486.
    [41]
    HUANG Y, CHEN XT, YANG SC, et al. Detection of proximal tubule involvement by BK polyomavirus in kidney transplant recipients with urinary sediment doubleimmunostaining[J]. Front Immunol, 2020, 11: 582678. DOI: 10.3389/fimmu.2020.582678.
    [42]
    JIN Y, ZHOU Y, DENG W, et al. Genome-wide profiling of BK polyomavirus integration in bladder cancer of kidney transplant recipients reveals mechanisms of the integration at the nucleotide level[J]. Oncogene, 2021, 40(1): 46-54. DOI: 10.1038/s41388-020-01502-w.
    [43]
    WANG Y, LIU Y, DENG W, et al. Viral integration in BK polyomavirus-associated urothelial carcinoma in renal transplant recipients: multistage carcinogenesis revealed by next-generation virome capture sequencing[J]. Oncogene, 2020, 39(35): 5734-5742. DOI: 10.1038/s41388-020-01398-6.
    [44]
    LOUPY A, AUBERT O, REESE PP, et al. Organ procurement and transplantation during the COVID-19 pandemic[J]. Lancet, 2020, 395(10237): e95-e96. DOI: 10.1016/S0140-6736(20)31040-0.
    [45]
    陈伟, 黄美近. 新型冠状病毒肺炎疫情下实施外科手术的思考和建议[J]. 中山大学学报(医学科学版), 2020, 41(2): 180-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYK202002003.htm

    CHEN W, HUANG MJ. Thoughts and advices on performing procedures in surgery during the outbreak of novel coronavirus pneumonia[J]. J Sun Yat-sen Univ (Med Sci), 2020, 41(2): 180-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYK202002003.htm
    [46]
    WANG J, LI X, CAO G, et al.COVID-19 in a kidney transplant patient[J].Eur Urol, 2020, 77(6): 769-770.DOI: 10.1016/j.eururo.2020.03.036.
    [47]
    ZHANG H, CHEN Y, YUAN Q, et al.Identification of kidney transplant recipients with coronavirus disease 2019[J].Eur Urol, 2020, 77(6): 742-747.DOI: 10.1016/j.eururo.2020.03.030.
    [48]
    ZHU L, GONG N, LIU B, et al.Coronavirus disease 2019 pneumonia in immunosuppressed renal transplant recipients: a summary of 10 confirmed cases in Wuhan, China[J].Eur Urol, 2020, 77(6): 748-754.DOI: 10.1016/j.eururo.2020.03.039.
    [49]
    WANG Y, YANG H, LIU H, et al.Strategies to halt 2019 novel coronavirus (SARS-CoV-2) spread for organ transplantation programs at the Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, China[J].Am J Transplant, 2020, 20(7): 1837-1839.DOI: 10.1111/ajt.15972.
    [50]
    XIA S, DUAN K, ZHANG Y, et al.Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials[J].JAMA, 2020, 324(10): 951-960.DOI: 10.1001/jama.2020.15543.
    [51]
    LAZARUS JV, RATZAN SC, PALAYEW A, et al.A global survey of potential acceptance of a COVID-19 vaccine[J].Nat Med, 2021, 27(2): 225-228.DOI: 10.1038/s41591-020-1124-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (801) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return