留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NF-κB相关信号通路在肾缺血-再灌注损伤中作用的研究进展

张瑞波, 申开文, 袁强, 等. NF-κB相关信号通路在肾缺血-再灌注损伤中作用的研究进展[J]. 器官移植, 2022, 13(3): 349-355. doi: 10.3969/j.issn.1674-7445.2022.03.011
引用本文: 张瑞波, 申开文, 袁强, 等. NF-κB相关信号通路在肾缺血-再灌注损伤中作用的研究进展[J]. 器官移植, 2022, 13(3): 349-355. doi: 10.3969/j.issn.1674-7445.2022.03.011
Zhang Ruibo, Shen Kaiwen, Yuan Qiang, et al. Research progress of NF-κB signaling pathway in kidney ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(3): 349-355. doi: 10.3969/j.issn.1674-7445.2022.03.011
Citation: Zhang Ruibo, Shen Kaiwen, Yuan Qiang, et al. Research progress of NF-κB signaling pathway in kidney ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(3): 349-355. doi: 10.3969/j.issn.1674-7445.2022.03.011

NF-κB相关信号通路在肾缺血-再灌注损伤中作用的研究进展

doi: 10.3969/j.issn.1674-7445.2022.03.011
基金项目: 

贵州省卫生健康委科学技术基金 gzwkj2021-220

贵州省科技计划项目 (2018)5779-6

国家自然科学基金培育项目(贵州医科大学附属医院) gyfynsfc(2020)-30

详细信息
    作者简介:
    通讯作者:

    沈俊,男,1973年生,博士,副主任医师,研究方向为肾移植相关缺血-再灌注损伤与保护,Email:shenjun@gmc.edu.cn

  • 中图分类号: R617, R692

Research progress of NF-κB signaling pathway in kidney ischemia-reperfusion injury

More Information
  • 摘要: 肾缺血-再灌注损伤(IRI)是肾移植和肾部分切除术后预后不佳的主要原因,同时也是急性肾损伤的重要病理生理过程,因此,肾IRI的防治对于改善肾移植预后具有重要意义。然而,IRI的机制较为复杂,其具体机制尚未明确。炎症反应作为IRI主要发病机制之一,在IRI导致的肾损伤中具有重要意义。核因子(NF)-κB作为一种快速反应转录因子,被证实在肾IRI中参与炎症反应的调控。因此,本文将从NF-κB的结构组成、NF-κB信号通路的激活途径及肾IRI中NF-κB上游信号通路和下游信号通路的调控机制进行综述,探讨NF-κB相关信号通路在肾IRI中的作用,为肾IRI的防治提供新的临床思路。

     

  • [1] NIEUWENHUIJS-MOEKE GJ, PISCHKE SE, BERGER SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 2020, 9(1): 253. DOI: 10.3390/jcm9010253.
    [2] SHANG Y, MADDUMA HEWAGE S, WIJERATHNE CUB, et al. Kidney ischemia-reperfusion elicits acute liver injury and inflammatory response[J]. Front Med (Lausanne), 2020, 7: 201. DOI: 10.3389/fmed.2020.00201.
    [3] MULERO MC, HUXFORD T, GHOSH G. NF-κB, IκB, and IKK: integral components of immune system signaling[J]. Adv Exp Med Biol, 2019, 1172: 207-226. DOI: 10.1007/978-981-13-9367-9_10.
    [4] YU H, LIN L, ZHANG Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209. DOI: 10.1038/s41392-020-00312-6.
    [5] GUO S, ZHANG F, CHEN Y, et al. Pre-ischemic renal lavage protects against renal ischemia-reperfusion injury by attenuation of local and systemic inflammatory responses[J]. FASEB J, 2020, 34(12): 16307-16318. DOI: 10.1096/fj.201902943R.
    [6] PAZZAGLIA S, PIOLI C. Multifaceted role of PARP-1 in DNA repair and inflammation: pathological and therapeutic implications in cancer and non-cancer diseases[J]. Cells, 2019, 9(1): 41. DOI: 10.3390/cells9010041.
    [7] KOVACS K, VACZY A, FEKETE K, et al. PARP inhibitor protects against chronic hypoxia/reoxygenation-induced retinal injury by regulation of MAPKs, HIF1α, Nrf2, and NFκB[J]. Invest Ophthalmol Vis Sci, 2019, 60(5): 1478-1490. DOI: 10.1167/iovs.18-25936.
    [8] ZHANG JN, MA Y, WEI XY, et al. Remifentanil protects against lipopolysaccharide-induced inflammation through PARP-1/NF-κB signaling pathway[J]. Mediators Inflamm, 2019: 3013716. DOI: 10.1155/2019/3013716.
    [9] KE Y, WANG C, ZHANG J, et al. The role of PARPs in inflammation-and metabolic-related diseases: molecular mechanisms and beyond[J]. Cells, 2019, 8(9): 1047. DOI: 10.3390/cells8091047.
    [10] JANG HR, LEE K, JEON J, et al. Poly (ADP-ribose) polymerase inhibitor treatment as a novel therapy attenuating renal ischemia-reperfusion injury[J]. Front Immunol, 2020, 11: 564288. DOI: 10.3389/fimmu.2020.564288.
    [11] WANG L, LIU X, CHEN H, et al. Effect of picroside Ⅱ on apoptosis induced by renal ischemia/reperfusion injury in rats[J]. Exp Ther Med, 2015, 9(3): 817-822. DOI: 10.3892/etm.2015.2192.
    [12] SU S, ZHANG P, ZHANG Q, et al GSK-3β inhibitor induces expression of the TLR4/MyD88/NF-κB signaling pathway to protect against renal ischemia-reperfusion injury during rat kidney transplantation[J]. Inflammation, 2019, 42(6): 2105-2118. DOI: 10.1007/s10753-019-01074-2.
    [13] HU X, DING C, DING X, et al. Inhibition of myeloid differentiation protein 2 attenuates renal ischemia/reperfusion-induced oxidative stress and inflammation via suppressing TLR4/TRAF6/NF-kB pathway[J]. Life Sci, 2020, 256: 117864. DOI: 10.1016/j.lfs.2020.117864.
    [14] 李俊, 左沙沙, 邱小萱, 等. 白头翁皂苷B4对结扎大鼠肾动静脉所致缺血再灌注损伤的治疗作用及相关机制研究[J]. 中国中药杂志, 2020, 45(3): 617-622. DOI: 10.19540/j.cnki.cjcmm.20191209.401.

    LI J, ZUO SS, QIU XX, et al. Study on therapeutic effect and its related mechanism of anemoside B4 on ischemia reperfusion injury induced by renal artery and vein ligation in rats[J]. China J Chin Mater Med, 2020, 45(3): 617-622. DOI: 10.19540/j.cnki.cjcmm.20191209.401.
    [15] LI J, LI L, WANG S, et al. Resveratrol alleviates inflammatory responses and oxidative stress in rat kidney ischemia-reperfusion injury and H2O2-induced NRK-52E cells via the Nrf2/TLR4/NF-κB pathway[J]. Cell Physiol Biochem, 2018, 45(4): 1677-1689. DOI: 10.1159/000487735.
    [16] GAO D, JING S, ZHANG Q, et al. Pterostilbene protects against acute renal ischemia reperfusion injury and inhibits oxidative stress, inducible nitric oxide synthase expression and inflammation in rats via the Toll-like receptor 4/nuclear factor-κB signaling pathway[J]. Exp Ther Med, 2018, 15(1): 1029-1035. DOI: 10.3892/etm.2017.5479.
    [17] NA SW, JANG YJ, HONG MH, et al. Protective effect of Joa-gui em through the improvement of the NLRP3 and TLR4/NF-κB signaling by ischemia/reperfusion-induced acute renal failure rats[J]. Evid Based Complement Alternat Med, 2021: 7178868. DOI: 10.1155/2021/7178868.
    [18] SHAO G, HE J, MENG J, et al. Ganoderic acids prevent renal ischemia reperfusion injury by inhibiting inflammation and apoptosis[J]. Int J Mol Sci, 2021, 22(19): 10229. DOI: 10.3390/ijms221910229.
    [19] DONG Q, JIE Y, MA J, et al. Wnt/β-catenin signaling pathway promotes renal ischemia-reperfusion injury through inducing oxidative stress and inflammation response[J]. J Recept Signal Transduct Res, 2021, 41(1): 15-18. DOI: 10.1080/10799893.2020.1783555.
    [20] WONG DWL, YIU WH, CHAN KW, et al. Activated renal tubular Wnt/β-catenin signaling triggers renal inflammation during overload proteinuria[J]. Kidney Int, 2018, 93(6): 1367-1383. DOI: 10.1016/j.kint.2017.12.017.
    [21] FRANZIN R, STASI A, FIORENTINO M, et al. Inflammaging and complement system: a link between acute kidney injury and chronic graft damage[J]. Front Immunol, 2020, 11: 734. DOI: 10.3389/fimmu.2020.00734.
    [22] MA B, HOTTIGER MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation[J]. Front Immunol, 2016, 7: 378. DOI: 10.3389/fimmu.2016.00378.
    [23] ALI RM, AL-SHORBAGY MY, HELMY MW, et al. Role of Wnt4/β-catenin, Ang Ⅱ/TGFβ, ACE2, NF-κB, and IL-18 in attenuating renal ischemia/reperfusion-induced injury in rats treated with Vit D and pioglitazone[J]. Eur J Pharmacol, 2018, 831: 68-76. DOI: 10.1016/j.ejphar.2018.04.032.
    [24] ZHANG J, ZOU YR, ZHONG X, et al. Erythropoietin pretreatment ameliorates renal ischaemia-reperfusion injury by activating PI3K/Akt signaling[J]. Nephrology (Carlton), 2015, 20(4): 266-272. DOI: 10.1111/nep.12384.
    [25] HU S, ZHANG Y, ZHANG M, et al. Aloperine protects mice against ischemia-reperfusion (IR)-induced renal injury by regulating PI3K/Akt/mTOR signaling and AP-1 activity[J]. Mol Med, 2016, 21(1): 912-923. DOI: 10.2119/molmed.2015.00056.
    [26] XIE DQ, SUN GY, ZHANG XG, et al. Osthole preconditioning protects rats against renal ischemia-reperfusion injury[J]. Transplant Proc, 2015, 47(6): 1620-1626. DOI: 10.1016/j.transproceed.2015.06.011.
    [27] ZHANG G, WANG Q, WANG W, et al. Tempol protects against acute renal injury by regulating PI3K/Akt/mTOR and GSK3β signaling cascades and afferent arteriolar activity[J]. Kidney Blood Press Res, 2018, 43(3): 904-913. DOI: 10.1159/000490338.
    [28] ZHANG YJ, ZHANG AQ, ZHAO XX, et al. Nicorandil protects against ischaemia-reperfusion injury in newborn rat kidney[J]. Pharmacology, 2013, 92(5/6): 245-256. DOI: 10.1159/000355060.
    [29] 袁强, 申开文, 张瑞波, 等. NLRP3炎症小体与相关炎症信号通路在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2021, 12(2): 177-183. DOI: 10.3969/j.issn.1674-7445.2021.02.007.

    YUAN Q, SHEN KW, ZHANG RB, et al. Role of NLRP3 inflammasome and related inflammatory signaling pathways in renal ischemia-reperfusion injury[J]. Organ Transplant, 2021, 12(2): 177-183. DOI: 10.3969/j.issn.1674-7445.2021.02.007.
    [30] XIAO C, ZHAO H, ZHU H, et al. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia-reperfusion injury via NF-κB signaling[J]. Front Physiol, 2020, 11: 906. DOI: 10.3389/fphys.2020.00906.
    [31] KOMADA T, MURUVE DA. The role of inflammasomes in kidney disease[J]. Nat Rev Nephrol, 2019, 15(8): 501-520. DOI: 10.1038/s41581-019-0158-z.
    [32] JIANG S, ZHANG H, LI X, et al. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/Caspase-1/GSDMD pyroptosis pathway[J]. J Steroid Biochem Mol Biol, 2021, 206: 105789. DOI: 10.1016/j.jsbmb.2020.105789.
    [33] LI X, ZOU Y, FU YY, et al. Ibudilast attenuates folic acid-induced acute kidney injury by blocking pyroptosis through TLR4-mediated NF-κB and MAPK signaling pathways[J]. Front Pharmacol, 2021, 12: 650283. DOI: 10.3389/fphar.2021.650283.
    [34] TANG TT, LV LL, PAN MM, et al. Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation[J]. Cell Death Dis, 2018, 9(3): 351. DOI: 10.1038/s41419-018-0378-3.
    [35] ZHOU J, ZHANG F, LIN H, et al. The protein kinase R inhibitor C16 alleviates sepsis-induced acute kidney injury through modulation of the NF-κB and NLR family pyrin domain-containing 3 (NLPR3) pyroptosis signal pathways[J]. Med Sci Monit, 2020, 26: e926254. DOI: 10.12659/MSM.926254.
    [36] JANG HN, KIM JH, JUNG MH, et al. Human endothelial progenitor cells protect the kidney against ischemia-reperfusion injury via the NLRP3 inflammasome in mice[J]. Int J Mol Sci, 2022, 23(3): 1546. DOI: 10.3390/ijms23031546.
    [37] ZHENG Z, XU K, LI C, et al. NLRP3 associated with chronic kidney disease progression after ischemia/reperfusion-induced acute kidney injury[J]. Cell Death Discov, 2021, 7(1): 324. DOI: 10.1038/s41420-021-00719-2.
    [38] LIAO Y, LIN X, LI J, et al. Nodakenin alleviates renal ischaemia-reperfusion injury via inhibiting reactive oxygen species-induced NLRP3 inflammasome activation[J]. Nephrology (Carlton), 2021, 26(1): 78-87. DOI: 10.1111/nep.13781.
    [39] LI ZL, JI JL, WEN Y, et al. HIF-1α is transcriptionally regulated by NF-κB in acute kidney injury[J]. Am J Physiol Renal Physiol, 2021, 321(2): F225-F235. DOI: 10.1152/ajprenal.00119.2021.
    [40] LIU Z, DONG Z. A cross talk between HIF and NF-κB in AKI[J]. Am J Physiol Renal Physiol, 2021, 321(3): F255-F256. DOI: 10.1152/ajprenal.00256.2021.
    [41] TIAN H, WU M, ZHOU P, et al. The long non-coding RNA MALAT1 is increased in renal ischemia-reperfusion injury and inhibits hypoxia-induced inflammation[J]. Ren Fail, 2018, 40(1): 527-533. DOI: 10.1080/0886022X.2018.1487863.
    [42] YU TM, PALANISAMY K, SUN KT, et al. Rantes mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and lncRNA PRINS[J]. Sci Rep, 2016, 6: 18424. DOI: 10.1038/srep18424.
    [43] HAN M, LI S, XIE H, et al. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2021, 320(3): F308-F321. DOI: 10.1152/ajprenal.00577.2020.
  • 加载中
图(1)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  127
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回