留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

皮肤移植物抗宿主病发病机制研究进展

李小燕 葸瑞 白海

李小燕, 葸瑞, 白海. 皮肤移植物抗宿主病发病机制研究进展[J]. 器官移植, 2022, 13(1): 120-125. doi: 10.3969/j.issn.1674-7445.2022.01.018
引用本文: 李小燕, 葸瑞, 白海. 皮肤移植物抗宿主病发病机制研究进展[J]. 器官移植, 2022, 13(1): 120-125. doi: 10.3969/j.issn.1674-7445.2022.01.018
Li Xiaoyan, Xi Rui, Bai Hai. Research progress on pathogenesis of skin graft-versus-host disease[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 120-125. doi: 10.3969/j.issn.1674-7445.2022.01.018
Citation: Li Xiaoyan, Xi Rui, Bai Hai. Research progress on pathogenesis of skin graft-versus-host disease[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 120-125. doi: 10.3969/j.issn.1674-7445.2022.01.018

皮肤移植物抗宿主病发病机制研究进展

doi: 10.3969/j.issn.1674-7445.2022.01.018
基金项目: 

甘肃省重大专项项目 1102FKDA005

详细信息
    作者简介:

    李小燕,女,1993年生,硕士,住院医师,研究方向为造血干细胞移植,Email:1072236512@qq.com

    通讯作者:

    葸瑞,女,1970年生,硕士,副主任医师,研究方向为血液病综合诊断,Email:xirui36@qq.com

    白海,男,1961年生,博士,主任医师,研究方向为造血干细胞移植,Email:baihai@tom.com

  • 中图分类号: R617, R751

Research progress on pathogenesis of skin graft-versus-host disease

More Information
  • 摘要: 移植物抗宿主病(GVHD)是目前造成异基因造血干细胞移植广泛应用的主要阻碍,是一种可以累及皮肤、肝脏、肺脏、胃肠道等全身各个系统的并发症,其中皮肤是最易受累的器官。目前,皮肤GVHD的发病机制尚未完全阐明,且缺乏有效的治疗手段。重度或广泛型慢性GVHD极大地影响受者的生活质量,因此研究皮肤GVHD的发病机制,从中找到新的治疗方法非常迫切。研究发现白细胞介素(IL)-22、IL-17、IL-6和干扰素(IFN)-γ等细胞因子在皮肤GVHD的发生中扮演重要的角色,但具体作用机制仍不够明确。因此,本文就国内外关于这些细胞因子在皮肤GVHD中的作用机制研究进展做一综述,以期为皮肤GVHD的预防和治疗提供新的思路。

     

  • [1] FLOWERS ME, INAMOTO Y, CARPENTER PA, et al. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria[J]. Blood, 2011, 117(11): 3214-3219. DOI: 10.1182/blood-2010-08-302109.
    [2] STROBL J, PANDEY RV, KRAUSGRUBER T, et al. Anti-apoptotic molecule BCL2 is a therapeutic target in steroid-refractory graft-versus-host disease[J]. J Invest Dermatol, 2020, 140(11): 2188-2198. DOI: 10.1016/j.jid.2020.02.029.
    [3] ZHANG P, YANG S, ZOU Y, et al. NK cell predicts the severity of acute graft-versus-host disease in patients after allogeneic stem cell transplantation using antithymocyte globulin (ATG) in pretreatment scheme[J]. BMC Immunol, 2019, 20(1): 46. DOI: 10.1186/s12865-019-0326-8.
    [4] ZHOU Z, SHANG T, LI X, et al. Protecting intestinal microenvironment alleviates acute graft-versus-host disease[J]. Front Physiol, 2021, 11: 608279. DOI: 10.3389/fphys.2020.608279.
    [5] KEIR M, YI Y, LU T, et al. The role of IL-22 in intestinal health and disease[J]. J Exp Med, 2020, 217(3): e20192195. DOI: 10.1084/jem.20192195.
    [6] OUYANG W, O'GARRA A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation[J]. Immunity, 2019, 50(4): 871-891. DOI: 10.1016/j.immuni.2019.03.020.
    [7] SABIHI M, BÖTTCHER M, PELCZAR P, et al. Microbiota-dependent effects of IL-22[J]. Cells, 2020, 9(10): 2205. DOI: 10.3390/cells9102205.
    [8] FURUE M. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: pathogenic implications in atopic dermatitis[J]. Int J Mol Sci, 2020, 21(15): 5382. DOI: 10.3390/ijms21155382.
    [9] OWEN KL, BROCKWELL NK, PARKER BS. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression[J]. Cancers (Basel), 2019, 11(12): 2002. DOI: 10.3390/cancers11122002.
    [10] SA SM, VALDEZ PA, WU J, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis[J]. J Immunol, 2007, 178(4): 2229-2240. DOI: 10.4049/jimmunol.178.4.2229.
    [11] GARTLAN KH, BOMMIASAMY H, PAZ K, et al. A critical role for donor-derived IL-22 in cutaneous chronic GVHD[J]. Am J Transplant, 2018, 18(4): 810-820. DOI: 10.1111/ajt.14513.
    [12] PAN B, XIA F, WU Y, et al. Recipient-derived IL-22 alleviates murine acute graft-versus-host disease in association with reduced activation of antigen presenting cells[J]. Cytokine, 2018, 111: 33-40. DOI: 10.1016/j.cyto.2018.08.010.
    [13] MCGEACHY MJ, CUA DJ, GAFFEN SL. The IL-17 family of cytokines in health and disease[J]. Immunity, 2019, 50(4): 892-906. DOI: 10.1016/j.immuni.2019.03.021.
    [14] LIU T, LI S, YING S, et al. The IL-23/IL-17 pathway in inflammatory skin diseases: from bench to bedside[J]. Front Immunol, 2020, 11: 594735. DOI: 10.3389/fimmu.2020.594735.
    [15] LAI P, CHEN X, GUO L, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD[J]. J Hematol Oncol, 2018, 11(1): 135. DOI: 10.1186/s13045-018-0680-7.
    [16] HOTTA M, YOSHIMURA H, SATAKE A, et al. GM-CSF therapy inhibits chronic graft-versus-host disease via expansion of regulatory T cells[J]. Eur J Immunol, 2019, 49(1): 179-191. DOI: 10.1002/eji.201847684.
    [17] ITO R, KATANO I, OTSUKA I, et al. Exacerbation of pathogenic Th17-cell-mediated cutaneous graft-versus-host-disease in human IL-1β and IL-23 transgenic humanized mice[J]. Biochem Biophys Res Commun, 2019, 516(2): 480-485. DOI: 10.1016/j.bbrc.2019.06.094.
    [18] CHEN X, VODANOVIC-JANKOVIC S, JOHNSON B, et al. Absence of regulatory T-cell control of Th1 and Th17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease[J]. Blood, 2007, 110(10): 3804-3813. DOI: 10.1182/blood-2007-05-091074.
    [19] KLIMCZAK A, SUCHNICKI K, SEDZIMIRSKA M, et al. Diverse activity of IL-17+ cells in chronic skin and mucosa graft-versus-host disease[J]. Arch Immunol Ther Exp (Warsz), 2019, 67(5): 311-323. DOI: 10.1007/s00005-019-00549-2.
    [20] QING H, DESROULEAUX R, ISRANI-WINGER K, et al. Origin and function of stress-induced IL-6 in murine models[J]. Cell, 2020, 182(6): 1660. DOI: 10.1016/j.cell.2020.08.044.
    [21] KAUR S, BANSAL Y, KUMAR R, et al. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors[J]. Bioorg Med Chem, 2020, 28(5): 115327. DOI: 10.1016/j.bmc.2020.115327.
    [22] GRECO R, LORENTINO F, NITTI R, et al. Interleukin-6 as biomarker for acute GVHD and survival after allogeneic transplant with post-transplant cyclophosphamide[J]. Front Immunol, 2019, 10: 2319. DOI: 10.3389/fimmu.2019.02319.
    [23] LIN J, LI X, XIA J. Th17 cells in neuromyelitis optica spectrum disorder: a review[J]. Int J Neurosci, 2016, 126(12): 1051-1060. DOI: 10.3109/00207454.2016.1163550.
    [24] CHEN X, DAS R, KOMOROWSKI R, et al. Blockade of interleukin-6 signaling augments regulatory T-cell reconstitution and attenuates the severity of graft-versus-host disease[J]. Blood, 2009, 114(4): 891-900. DOI: 10.1182/blood-2009-01-197178.
    [25] TAWARA I, KOYAMA M, LIU C, et al. Interleukin-6 modulates graft-versus-host responses after experimental allogeneic bone marrow transplantation[J]. Clin Cancer Res, 2011, 17(1): 77-88. DOI: 10.1158/1078-0432.CCR-10-1198.
    [26] TVEDT THA, HOVLAND R, TSYKUNOVA G, et al. A pilot study of single nucleotide polymorphisms in the interleukin-6 receptor and their effects on pre- and post-transplant serum mediator level and outcome after allogeneic stem cell transplantation[J]. Clin Exp Immunol, 2018, 193(1): 130-141. DOI: 10.1111/cei.13124.
    [27] JIANG Z, LIAO R, LV J, et al. IL-6 trans-signaling promotes the expansion and anti-tumor activity of CAR T cells[J]. Leukemia, 2021, 35(5): 1380-1391. DOI: 10.1038/s41375-020-01085-1.
    [28] BAAKE T, JÖRß K, SUENNEMANN J, et al. The glucocorticoid receptor in recipient cells keeps cytokine secretion in acute graft-versus-host disease at bay[J]. Oncotarget, 2018, 9(21): 15437-15450. DOI: 10.18632/oncotarget.24602.
    [29] WILKINSON AN, CHANG K, KUNS RD, et al. IL-6 dysregulation originates in dendritic cells and mediates graft-versus-host disease via classical signaling[J]. Blood, 2019, 134(23): 2092-2106. DOI: 10.1182/blood.2019000396.
    [30] JORGOVANOVIC D, SONG M, WANG L, et al. Roles of IFN-γ in tumor progression and regression: a review[J]. Biomark Res, 2020, 8: 49. DOI: 10.1186/s40364-020-00228-x.
    [31] IVASHKIV LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(9): 545-558. DOI: 10.1038/s41577-018-0029-z.
    [32] BURKE JD, YOUNG HA. IFN-γ: a cytokine at the right time, is in the right place[J]. Semin Immunol, 2019, 43: 101280. DOI: 10.1016/j.smim.2019.05.002.
    [33] TAKAHASHI S, HASHIMOTO D, HAYASE E, et al. Ruxolitinib protects skin stem cells and maintains skin homeostasis in murine graft-versus-host disease[J]. Blood, 2018, 131(18): 2074-2085. DOI: 10.1182/blood-2017-06-792614.
    [34] SAITO A, ICHIMURA Y, KUBOTA N, et al. IFN-γ-stimulated apoptotic keratinocytes promote sclerodermatous changes in chronic graft-versus-host disease[J]. J Invest Dermatol, 2021, 141(6): 1473-1481. DOI: 10.1016/j.jid.2020.09.033.
    [35] ALI H, SALHOTRA A, MODI B, et al. Ruxolitinib for the treatment of graft-versus-host disease[J]. Expert Rev Clin Immunol, 2020, 16(4): 347-359. DOI: 10.1080/1744666X.2020.1740592.
    [36] CHOI J, COOPER ML, STASER K, et al. Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease[J]. Leukemia, 2018, 32(11): 2483-2494. DOI: 10.1038/s41375-018-0123-z.
    [37] KATTNER AS, HOLLER E, HOLLER B, et al. IL6-receptor antibody tocilizumab as salvage therapy in severe chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a retrospective analysis[J]. Ann Hematol, 2020, 99(4): 847-853. DOI: 10.1007/s00277-020-03968-w.
    [38] STRATTAN E, PALANIYANDI S, KUMARI R, et al. Mast cells are mediators of fibrosis and effector cell recruitment in dermal chronic graft-vs. -host disease[J]. Front Immunol, 2019, 10: 2470. DOI: 10.3389/fimmu.2019.02470.
    [39] KUBOTA N, SAITO A, TANAKA R, et al. Langerhans cells suppress CD8+ T cells in situ during mucocutaneous acute graft-versus-host disease[J]. J Invest Dermatol, 2021, 141(5): 1177-1187. DOI: 10.1016/j.jid.2020.09.018.
    [40] ONO R, WATANABE T, KAWAKAMI E, et al. Co-activation of macrophages and T cells contribute to chronic GVHD in human IL-6 transgenic humanised mouse model[J]. EBioMedicine, 2019, 41: 584-596. DOI: 10.1016/j.ebiom.2019.02.001.
  • 加载中
图(1)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  118
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 网络出版日期:  2022-01-12
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回