留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚低温上调冷休克蛋白RBM3表达减轻肾脏缺血-再灌注损伤

宋克芹 肖琦 肖建生 罗凯锋

宋克芹, 肖琦, 肖建生, 等. 亚低温上调冷休克蛋白RBM3表达减轻肾脏缺血-再灌注损伤[J]. 器官移植, 2021, 12(5): 571-578. doi: 10.3969/j.issn.1674-7445.2021.05.011
引用本文: 宋克芹, 肖琦, 肖建生, 等. 亚低温上调冷休克蛋白RBM3表达减轻肾脏缺血-再灌注损伤[J]. 器官移植, 2021, 12(5): 571-578. doi: 10.3969/j.issn.1674-7445.2021.05.011
Song Keqin, Xiao Qi, Xiao Jiansheng, et al. Mild hypothermia alleviates renal ischemia-reperfusion injury by up-regulating the expression of cold-shock protein RBM3[J]. ORGAN TRANSPLANTATION, 2021, 12(5): 571-578. doi: 10.3969/j.issn.1674-7445.2021.05.011
Citation: Song Keqin, Xiao Qi, Xiao Jiansheng, et al. Mild hypothermia alleviates renal ischemia-reperfusion injury by up-regulating the expression of cold-shock protein RBM3[J]. ORGAN TRANSPLANTATION, 2021, 12(5): 571-578. doi: 10.3969/j.issn.1674-7445.2021.05.011

亚低温上调冷休克蛋白RBM3表达减轻肾脏缺血-再灌注损伤

doi: 10.3969/j.issn.1674-7445.2021.05.011
基金项目: 

江西省青年科学基金资助项目 20192BAB215012

江西省卫生健康委科技计划 20203206

详细信息
    作者简介:

    宋克芹,女,1991年生,硕士研究生,研究方向为肾移植相关肾缺血-再灌注损伤的保护,Email: 948667973@qq.com

    通讯作者:

    肖琦,男,1985年生,博士,主治医师,研究方向为肾移植相关肾缺血-再灌注损伤的保护, E-mail: xiaoqidoctor@163.com

  • 中图分类号: R617,R339.6

Mild hypothermia alleviates renal ischemia-reperfusion injury by up-regulating the expression of cold-shock protein RBM3

More Information
  • 摘要:   目的  探讨亚低温对肾脏缺血-再灌注损伤(IRI)的作用,以及RNA结合基序蛋白3(RBM3)及其下游效应分子在这一过程中的表达情况。  方法  健康SD雄性大鼠18只,随机分为正常对照(NC)组、IRI组和亚低温预处理(MHP)组,每组6只。通过检测血清肌酐水平评价肾功能,苏木素-伊红(HE)染色检测肾脏组织损伤情况,蛋白质印迹法检测肾脏组织的RBM3、Yes相关蛋白1(YAP1)、核因子E2相关因子2(Nrf2)、B淋巴细胞瘤-2(Bcl-2)、Bcl-2相关X蛋白(Bax)蛋白相对表达量,免疫组织化学染色进一步检测RBM3及YAP1蛋白的表达情况,采用脱氧核糖核酸末端转移酶介导的dUTP缺口末端标记(TUNEL)法检测肾脏组织细胞凋亡情况,通过测定丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性检测肾脏组织氧化应激水平。  结果  与NC组相比较,IRI组和MHP组血清肌酐水平、肾脏组织病理损伤评分均升高,RBM3、YAP1和Nrf2蛋白表达水平均升高,Bcl-2/Bax比值均降低,细胞凋亡率均升高,MDA含量均升高,SOD活性均下降,差异均有统计学意义(均为P < 0.05);与IRI组相比较,MHP组血清肌酐水平、肾脏组织病理损伤评分均降低,RBM3、YAP1和Nrf2蛋白表达水平均升高,Bcl-2/Bax比值升高,细胞凋亡率降低,MDA含量降低,SOD活性升高,差异均有统计学意义(均为P < 0.05)。  结论  亚低温对肾脏IRI具有保护作用,可减轻IRI所致细胞凋亡和氧化应激损伤,其机制可能为亚低温上调RBM3及其下游效应分子YAP1和Nrf2的表达水平。

     

  • 图  1  各组大鼠肾脏组织病理学表现

    注: A图为各组大鼠肾皮质和肾髓质组织病理学图片(HE,× 200);B图为各组大鼠肾脏组织病理损伤评分,与NC组比较,aP<0.05,与IRI组比较,bP<0.05。

    Figure  1.  Histopathological findings of kidney tissues in rats among each group

    图  2  各组大鼠肾脏组织蛋白表达水平比较

    注:A图示蛋白质印迹法检测各组蛋白表达水平;B图为蛋白质印迹法检测的定量分析结果,与NC组比较,aP<0.05,与IRI组比较,bP<0.05。

    Figure  2.  Comparison of protein expression levels in kidney tissues of rats among each group

    图  3  各组大鼠肾脏组织RBM3和YAP1阳性细胞分布情况(免疫组织化学,× 200)

    注:棕黄色代表阳性细胞。

    Figure  3.  Distribution of RBM3 and YAP1 positive cells in kidney tissues of rats among each group

    图  4  各组大鼠肾脏组织细胞凋亡率比较

    注:A图为各组大鼠肾脏组织细胞TUNEL染色图片,绿色荧光代表凋亡细胞(TUNEL,× 200);B图为各组大鼠肾脏组织细胞凋亡率比较,与NC组比较,aP<0.05,与IRI组比较,bP<0.05。

    Figure  4.  Comparison of the apoptosis rate in kidney tissues of rats among each group

    图  5  各组大鼠肾脏组织氧化应激水平比较

    注:A图示各组大鼠肾脏组织MDA含量;B图示各组大鼠肾脏组织SOD活性;与NC组比较,aP<0.05,与IRI组比较,bP<0.05。

    Figure  5.  Comparison of oxidative stress levels in kidney tissues of rats among each group

  • [1] CLAYTON LM, RIZZOLO D, NAIR V. Kidney transplant wait list: review and current trends[J]. JAAPA, 2018, 31(10): 1-5. DOI: 10.1097/01.JAA.0000545074.86472.d4.
    [2] SAAT TC, VAN DEN AKKER EK, IJZERMANS JN, et al. Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation?[J]. J Transl Med, 2016, 14: 20. DOI: 10.1186/s12967-016-0767-2.
    [3] ZHU X, BÜHRER C, WELLMANN S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold[J]. Cell Mol Life Sci, 2016, 73(20): 3839-3859. DOI: 10.1007/s00018-016-2253-7.
    [4] AL-ASTAL HI, MASSAD M, ALMATAR M, et al. Cellular functions of RNA-binding motif protein 3 (RBM3): clues in hypothermia, cancer biology and apoptosis[J]. Protein Pept Lett, 2016, 23(9): 828-835. DOI: 10.2174/0929866523666160628090340.
    [5] XIA W, SU L, JIAO J. Cold-induced protein RBM3 orchestrates neurogenesis via modulating YAP mRNA stability in cold stress[J]. J Cell Biol, 2018, 217(10): 3464-3479. DOI: 10.1083/jcb.201801143.
    [6] SHIBATA M, HAM K, HOQUE MO. A time for YAP1: tumorigenesis, immunosuppression and targeted therapy[J]. Int J Cancer, 2018, 143(9): 2133-2144. DOI: 10.1002/ijc.31561.
    [7] CIAMPORCERO E, DAGA M, PIZZIMENTI S, et al. Crosstalk between Nrf2 and YAP contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer[J]. Free Radic Biol Med, 2018, 115: 447-457. DOI: 10.1016/j.freeradbiomed.2017.12.005.
    [8] CUCCI MA, GRATTAROLA M, DIANZANI C, et al. Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism[J]. Free Radic Biol Med, 2020, 150: 125-135. DOI: 10.1016/j.freeradbiomed.2020.02.021.
    [9] XIAO Q, YE Q, WANG W, et al. Mild hypothermia pretreatment protects against liver ischemia reperfusion injury via the PI3K/Akt/Foxo3a pathway[J]. Mol Med Rep, 2017, 16(5): 7520-7526. DOI: 10.3892/mmr.2017.7501.
    [10] ĐURAŠEVIĆ S, STOJKOVIĆ M, BOGDANOVIĆ L, et al. The effects of meldonium on the renal acute ischemia/reperfusion injury in rats[J]. Int J Mol Sci, 2019, 20(22): 5747. DOI: 10.3390/ijms20225747.
    [11] CHEN YT, YANG CC, LIN KC, et al. Preactivated and disaggregated shape-changed platelets protect kidney against from ischemia-reperfusion injury in rat through attenuating inflammation reaction[J]. J Tissue Eng Regen Med, 2019, 13(12): 2155-2168. DOI: 10.1002/term.2960.
    [12] NAKAZATO PCG, VICTORINO JP, FINA CF, et al. Liver ischemia and reperfusion injury. pathophysiology and new horizons in preconditioning and therapy[J]. Acta Cir Bras, 2018, 33(8): 723-735. DOI: 10.1590/s0102-865020180080000008.
    [13] COSTA FLDS, YAMAKI VN, TEIXEIRA RKC, et al. Perconditioning combined with postconditioning on kidney ischemia and reperfusion[J]. Acta Cir Bras, 2017, 32(8): 599-606. DOI: 10.1590/s0102-865020170080000001.
    [14] 潘宁波, 张旭阳, 张玉, 等. AMPK激动剂预处理对肝缺血再灌注损伤大鼠模型的影响及相关机制[J]. 临床肝胆病杂志, 2021, 37(5): 1152-1157. DOI: 10.3969/j.issn.1001-5256.2021.05.034.

    PAN NB, ZHANG XY, ZHANG Y, et al. Effect of pretreatment with adenosine monophosphate -activated protein kinase agonist on a rat model of hepatic ischemia-reperfusion injury and related mechanism[J]. J Clin Hepatol, 2021, 37(5): 1152-1157. DOI: 10.3969/j.issn.1001-5256.2021.05.034.
    [15] 闫林轩, 梅霄阳, 章林明, 等. G蛋白偶联雌激素受体通过减轻大鼠肾小管上皮细胞凋亡保护肾脏缺血再灌注损伤[J]. 实用医学杂志, 2021, 37(10): 1235-1239. DOI: 10.3969/j.issn.1006-5725.2021.10.001.

    YAN LX, MEI XY, ZHANG LM, et al. GPER protects renal ischemia-reperfusion injury by reducing the apoptosis of renal tubular epithelial cells in rats[J]. J Pract Med, 2021, 37(10): 1235-1239. DOI: 10.3969/j.issn.1006-5725.2021.10.001.
    [16] WYSTRYCHOWSKI G, WYSTRYCHOWSKI W, GRZESZCZAK W, et al. Pentoxifylline and methylprednisolone additively alleviate kidney failure and prolong survival of rats after renal warm ischemia-reperfusion[J]. Int J Mol Sci, 2018, 19(1): 221. DOI: 10.3390/ijms19010221.
    [17] HAN P, QIN Z, TANG J, et al. RTA-408 protects kidney from ischemia-reperfusion injury in mice via activating Nrf2 and downstream GSH biosynthesis gene[J]. Oxid Med Cell Longev, 2017: 7612182. DOI: 10.1155/2017/7612182.
    [18] CZIGANY Z, LURJE I, SCHMELZLE M, et al. Ischemia-reperfusion injury in marginal liver grafts and the role of hypothermic machine perfusion: molecular mechanisms and clinical implications[J]. J Clin Med, 2020, 9(3): 846. DOI: 10.3390/jcm9030846.
    [19] GUNN AJ, LAPTOOK AR, ROBERTSON NJ, et al. Therapeutic hypothermia translates from ancient history in to practice[J]. Pediatr Res, 2017, 81(1/2): 202-209. DOI: 10.1038/pr.2016.198.
    [20] HAN Z, LIU X, LUO Y, et al. Therapeutic hypothermia for stroke: where to go?[J]. Exp Neurol, 2015, 272: 67-77. DOI: 10.1016/j.expneurol.2015.06.006.
    [21] WANG W, HU X, XIA Z, et al. Mild hypothermia attenuates hepatic ischemia-reperfusion injury through regulating the JAK2/STAT3-CPT1a-dependent fatty acid β-oxidation[J]. Oxid Med Cell Longev, 2020: 5849794. DOI: 10.1155/2020/5849794.
    [22] LIU A, WANG W, LU Z, et al. Mild hypothermia pretreatment extenuates liver ischemia-reperfusion injury through Rab7-mediated autophagosomes-lysosomes fusion[J]. Biochem Biophys Res Commun, 2021, 550: 15-21. DOI: 10.1016/j.bbrc.2021.02.125.
    [23] GAO G, SHI X, LONG Y, et al. The prognostic and clinicopathological significance of RBM3 in the survival of patients with tumor: a Prisma-compliant Meta-analysis[J]. Medicine (Baltimore), 2020, 99(19): e20002. DOI: 10.1097/MD.0000000000020002.
    [24] WELLMANN S, BÜHRER C, MODEREGGER E, et al. Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism[J]. J Cell Sci, 2004, 117(Pt 9): 1785-1794. DOI: 10.1242/jcs.01026.
    [25] COLLAK FK, DEMIR U, OZKANLI S, et al. Increased expression of YAP1 in prostate cancer correlates with extraprostatic extension[J]. Cancer Biol Med, 2017, 14(4): 405-413. DOI: 10.20892/j.issn.2095-3941.2017.0083.
    [26] HUANG H, XIONG G, SHEN P, et al. MicroRNA-1285 inhibits malignant biological behaviors of human pancreatic cancer cells by negative regulation of YAP1[J]. Neoplasma, 2017, 64(3): 358-366. DOI: 10.4149/neo_2017_306.
    [27] LI S, YU Z, CHEN SS, et al. The YAP1 oncogene contributes to bladder cancer cell proliferation and migration by regulating the H19 long noncoding RNA[J]. Urol Oncol, 2015, 33(10): 427. DOI: 10.1016/j.urolonc.2015.06.003.
    [28] DU F, YU C, LI R, et al. Expression of miR-141 and YAP1 in gastric carcinoma and modulation of cancer cell proliferation and apoptosis[J]. Int J Clin Exp Pathol, 2019, 12(2): 559-567.
    [29] YANG Y, DUAN W, JIN Z, et al. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury[J]. J Pineal Res, 2013, 55(3): 275-286. DOI: 10.1111/jpi.12070.
    [30] WANG FJ, WANG SX, CHAI LJ, et al. Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress[J]. Acta Pharmacol Sin, 2018, 39(6): 998-1011. DOI: 10.1038/aps.2017.128.
    [31] TAGUCHI K, MOTOHASHI H, YAMAMOTO M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution[J]. Genes Cells, 2011, 16(2): 123-140. DOI: 10.1111/j.1365-2443.2010.01473.x.
    [32] ITOH K, TONG KI, YAMAMOTO M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles[J]. Free Radic Biol Med, 2004, 36(10): 1208-1213. DOI: 10.1016/j.freeradbiomed.2004.02.075.
  • 加载中
图(6)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  197
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2021-09-15

目录

    /

    返回文章
    返回