留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静脉注射免疫球蛋白的作用机制及在肾移植中的应用

欧志宇 贺裕 苗芸

欧志宇, 贺裕, 苗芸. 静脉注射免疫球蛋白的作用机制及在肾移植中的应用[J]. 器官移植, 2021, 12(3): 351-356. doi: 10.3969/j.issn.1674-7445.2021.03.015
引用本文: 欧志宇, 贺裕, 苗芸. 静脉注射免疫球蛋白的作用机制及在肾移植中的应用[J]. 器官移植, 2021, 12(3): 351-356. doi: 10.3969/j.issn.1674-7445.2021.03.015
Ou Zhiyu, He Yu, Miao Yun. Mechanism of intravenous immunoglobulin and its application in renal transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(3): 351-356. doi: 10.3969/j.issn.1674-7445.2021.03.015
Citation: Ou Zhiyu, He Yu, Miao Yun. Mechanism of intravenous immunoglobulin and its application in renal transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(3): 351-356. doi: 10.3969/j.issn.1674-7445.2021.03.015

静脉注射免疫球蛋白的作用机制及在肾移植中的应用

doi: 10.3969/j.issn.1674-7445.2021.03.015
基金项目: 

国家自然科学基金 82070770

广东省自然科学基金 2020A1515010674

广州市科技计划项目 201803010109

南方医院院长基金 2018B009

南方医院院长基金 2018C003

大学生创新创业训练计划项目 202012121046

大学生创新创业训练计划项目 X202012121239

详细信息
    作者简介:

    欧志宇,男,1997年生,博士研究生,研究方向为肾移植,Email:ouzhiyu15@163.com

    通讯作者:

    苗芸,女,1978年生,博士,主任医师,研究方向为肾移植,Email:miaoyunecho@126.com

  • 中图分类号: R617, R977.8

Mechanism of intravenous immunoglobulin and its application in renal transplantation

More Information
  • 摘要: 静脉注射免疫球蛋白(IVIG)是从健康人血浆中分离得到的免疫球蛋白(Ig),其主要成分是IgG。IVIG作用机制复杂,可以通过多种途径发挥作用,如IgG的Fc段与多种Fc段γ受体(FcγR)结合调控炎症反应以及自身抗体代谢,IgG的Fab段中和多种抗原和其它分子,IVIG还可以阻碍补体激活、影响免疫细胞间抑炎和促炎平衡。IVIG在疾病治疗中常通过多种机制同时发挥作用,并在不同疾病中以某一种机制为主。IVIG在肾移植中常用于致敏患者的脱敏治疗、ABO血型不相容肾移植、抗体介导的排斥反应以及部分感染性疾病的治疗。本文对IVIG的作用机制及其在肾移植中的应用做一综述。

     

  • 图  1  IgG分子结构及其介导的作用机制

    Figure  1.  Molecular structure of IgG and its mediating mechanism

  • [1] 邱晓, 罗建辉. 静脉注射人免疫球蛋白生产工艺、质量控制的演变及评价思考[J]. 中国生物制品学杂志, 2020, 33(11), 1336-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZP202011022.htm

    QIU X, LUO JH. Evolution and evaluation of production technology and quality control of human intravenous immunoglobulin[J]. Chin J Biol, 2020, 33(11), 1336-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZP202011022.htm
    [2] 孙盼, 马莉, 刁戈, 等. 国内7个厂家静注人免疫球蛋白产品成分分析[J]. 中国输血杂志, 2014, 27(1): 40-42. DOI: 10.13303/j.cjbt.issn.1004-549x.2014.01.015.

    SUN P, MA L, DIAO G, et al. Composition analysis of intravenous immunoglobulin from seven Chinese blood fractionation industries[J]. Chin J Blood Transfus, 2014, 27(1): 40-42. DOI: 10.13303/j.cjbt.issn.1004-549x.2014. 01.015.
    [3] ERMAKOV EA, NEVINSKY GA, BUNEVA VN. Immunoglobulins with non-canonical functions in inflammatory and autoimmune disease states[J]. Int J Mol Sci, 2020, 21(15): 5392. DOI: 10.3390/ijms21155392.
    [4] DOU X, YANG R. Current and emerging treatments for immune thrombocytopenia[J]. Expert Rev Hematol, 2019, 12(9): 723-732. DOI: 10.1080/17474086.2019.1636644.
    [5] GELFAND EW. Intravenous immune globulin in autoimmune and inflammatory diseases[J]. N Engl J Med, 2012, 367(21): 2015-2025. DOI: 10.1056/NEJMra1009433.
    [6] DALAKAS MC, SPAETH PJ. The importance of FcRn in neuro-immunotherapies: from IgG catabolism, FCGRTgene polymorphisms, IVIG dosing and efficiency to specificFcRn inhibitors[J]. Ther Adv Neurol Disord, 2021, 14: 1756286421997381. DOI: 10.1177/1756286421997381.
    [7] VERBOON C, VAN DEN BERG B, CORNBLATH DR, et al. Original research: second IVIG course in Guillain-Barré syndrome with poor prognosis: the non-randomised ISID study[J]. J Neurol Neurosurg Psychiatry, 2020, 91(2): 113-121. DOI: 10.1136/jnnp-2019-321496.
    [8] KARNAM A, RAMBABU N, DAS M, et al. Therapeutic normal IgG intravenous immunoglobulin activates Wnt-β-catenin pathway in dendritic cells[J]. Commun Biol, 2020, 3(1): 96. DOI: 10.1038/s42003-020-0825-4.
    [9] TRINATH J, HEGDE P, SHARMA M, et al. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells[J]. Blood, 2013, 122(8): 1419-1427. DOI: 10.1182/blood-2012-11-468264.
    [10] NAGELKERKE SQ, KUIJPERS TW. Immunomodulation by IVIG and the role of Fc-Gamma receptors: classic mechanisms of action after all?[J]. Front Immunol, 2015, 5: 674. DOI: 10.3389/fimmu.2014.00674.
    [11] HEITINK-POLLÉ KMJ, UITERWAAL CSPM, PORCELIJN L, et al. Intravenous immunoglobulin vs observation in childhood immune thrombocytopenia: a randomized controlled trial[J]. Blood, 2018, 132(9): 883-891. DOI: 10.1182/blood-2018-02-830844.
    [12] GOLDBERG BS, ACKERMAN ME. Antibody-mediated complement activation in pathology and protection[J]. Immunol Cell Biol, 2020, 98(4): 305-317. DOI: 10.1111/imcb.12324.
    [13] LUTZ HU, SPÄTH PJ. Anti-inflammatory effect of intravenous immunoglobulin mediated through modulation of complement activation[J]. Clin Rev Allergy Immunol, 2005, 29(3): 207-212. DOI: 10.1385/CRIAI:29:3:207.
    [14] WASSERMAN RL, LUMRY W, HARRIS J 3RD, et al. Efficacy, safety, and pharmacokinetics of a new 10% liquid intravenous immunoglobulin containing high titer neutralizing antibody to RSV and other respiratory viruses in subjects with primary immunodeficiency disease[J]. J Clin Immunol, 2016, 36(6): 590-599. DOI: 10.1007/s10875-016-0308-z.
    [15] EL-HUSSEINI A, AGHIL A, RAMIREZ J, et al. Outcome of kidney transplant in primary, repeat, and kidney-after-nonrenal solid-organ transplantation: 15-year analysis of recent UNOS database[J]. Clin Transplant, 2017, 31(11). DOI: 10.1111/ctr.13108.
    [16] MONTGOMERY RA, LONZE BE, KING KE, et al. Desensitization in HLA-incompatible kidney recipients and survival[J]. N Engl J Med, 2011, 365(4): 318-326. DOI: 10.1056/NEJMoa1012376.
    [17] BUJNOWSKA A, MICHON M, KONOPELSKI P, et al. Outcomes of prolonged treatment with intravenous immunoglobulin infusions for acute antibody-mediated rejection in kidney transplant recipients[J]. Transplant Proc, 2018, 50(6): 1720-1725. DOI: 10.1016/j.transproceed.2018.02.110.
    [18] MORESO F, CRESPO M, RUIZ JC, et al. Treatment of chronic antibody mediated rejection with intravenous immunoglobulins and rituximab: a multicenter, prospective, randomized, double-blind clinical trial[J]. Am J Transplant, 2018, 18(4): 927-935. DOI: 10.1111/ajt.14520.
    [19] SCURT FG, EWERT L, MERTENS PR, et al. Clinical outcomes after ABO-incompatible renal transplantation: a systematic review and Meta-analysis[J]. Lancet, 2019, 393(10185): 2059-2072. DOI: 10.1016/S0140-6736(18)32091-9.
    [20] HUSSAIN I, TASNEEM F, GILANI US, et al. Human BK and JC polyomaviruses: molecular insights and prevalence in Asia[J]. Virus Res, 2020, 278: 197860. DOI: 10.1016/j.virusres.2020.197860.
    [21] YOOPRASERT P, ROTJANAPAN P. BK virus-associated nephropathy: current situation in a resource-limited country[J]. Transplant Proc, 2018, 50(1): 130-136. DOI: 10.1016/j.transproceed.2017.11.007.
    [22] VU D, SHAH T, ANSARI J, et al. Efficacy of intravenous immunoglobulin in the treatment of persistent BK viremia and BK virus nephropathy in renal transplant recipients[J]. Transplant Proc, 2015, 47(2): 394-398. DOI: 10.1016/j.transproceed.2015.01.012.
    [23] KABLE K, DAVIES CD, O'CONNELL PJ, et al. Clearance of BK virus nephropathy by combination antiviral therapy with intravenous immunoglobulin[J]. Transplant Direct, 2017, 3(4): e142. DOI: 10.1097/TXD.0000000000000641.
    [24] THONGPRAYOON C, KHOURY NJ, BATHINI T, et al. Epidemiology of parvovirus B19 and anemia among kidney transplant recipients: a Meta-analysis[J]. Urol Ann, 2020, 12(3): 241-247. DOI: 10.4103/UA.UA_89_19.
    [25] RINKŪNAITĖ I, ŠIMOLIŪNAS E, BIRONAITĖ D, et al. The effect of a unique region of parvovirus B19 capsid protein VP1 on endothelial cells[J]. Biomolecules, 2021, 11(4): 606. DOI: 10.3390/biom11040606.
    [26] MODROF J, BERTING A, TILLE B, et al. Neutralization of human parvovirus B19 by plasma and intravenous immunoglobulins[J]. Transfusion, 2008, 48(1): 178-186. DOI: 10.1111/j.1537-2995.2007.01503.x.
    [27] MASCIA G, ARGIOLAS D, CARTA E, et al. Successful treatment of anemia with anaplastic and microangiopathic characteristics in a kidney transplant recipient with parvovirus B19 infection: a case report[J]. Transplant Proc, 2020, 52(5): 1619-1622. DOI: 10.1016/j.transproceed.2020.02.077.
    [28] KAYA B, PAYDAS S. Recurrence of pure red cell aplasia in a kidney transplant recipient due to reactivation of parvovirus B19 infection despite two cycles of intravenous immunoglobulin therapy[J]. Exp Clin Transplant, 2019, 17(Suppl 1): 195-197. DOI: 10.6002/ect.MESOT2018.P63.
    [29] ROSADO-CANTO R, CARRILLO-PÉREZ DL, JIMÉNEZ JV, et al. Treatment strategies and outcome of parvovirus B19 infection in kidney transplant recipients: a case series and literature review of 128 patients[J]. Rev Invest Clin, 2019, 71(4): 265-274. DOI: 10.24875/RIC.19002921.
    [30] INOUE D, ODA T, IWAMA S, et al. Development of pure red cell aplasia by transmission and persistent infection of parvovirus B19 through a kidney allograft[J]. Transpl Infect Dis, 2021, 23(1): e13462. DOI: 10.1111/tid.13462.
    [31] BONAROS N, MAYER B, SCHACHNER T, et al. CMV-hyperimmune globulin for preventing cytomegalovirus infection and disease in solid organ transplant recipients: a Meta-analysis[J]. Clin Transplant, 2008, 22(1): 89-97. DOI: 10.1111/j.1399-0012.2007.00750.x.
    [32] MAJEED A, LATIF A, KAPOOR V, et al. Resistant cytomegalovirus infection in solid-organ transplantation: single-center experience, literature review of risk factors, and proposed preventive strategies[J]. Transplant Proc, 2018, 50(10): 3756-3762. DOI: 10.1016/j.transproceed.2018.02.091.
    [33] SANTHANAKRISHNAN K, YONAN N, CALLAN P, et al. The use of CMVIg rescue therapy in cardiothoracic transplantation: a single-center experience over 6 years (2011-2017)[J]. Clin Transplant, 2019, 33(8): e13655. DOI: 10.1111/ctr.13655.
    [34] NAIK AS, DHARNIDHARKA VR, SCHNITZLER MA, et al. Clinical and economic consequences of first-year urinary tract infections, sepsis, and pneumonia in contemporary kidney transplantation practice[J]. Transpl Int, 2016, 29(2): 241-252. DOI: 10.1111/tri.12711.
    [35] JARCZAK D, KLUGE S, NIERHAUS A. Use of intravenous immunoglobulins in sepsis therapy-a clinical view[J]. Int J Mol Sci, 2020, 21(15): 5543. DOI: 10.3390/ijms21155543.
    [36] TUTTLE K, MCDONALD M, ANDERSON E. Re-evaluating biologic pharmacotherapies that target the host response during sepsis[J]. Int J Mol Sci, 2019, 20(23): 6049. DOI: 10.3390/ijms20236049.
    [37] YANG Y, YU X, ZHANG F, et al. Evaluation of the effect of intravenous immunoglobulin dosing on mortality in patients with sepsis: a network Meta-analysis[J]. Clin Ther, 2019, 41(9): 1823-1838. DOI: 10.1016/j.clinthera.2019.06.010.
    [38] NIERHAUS A, BERLOT G, KINDGEN-MILLES D, et al. Best-practice IgM- and IgA-enriched immunoglobulin use in patients with sepsis[J]. Ann Intensive Care, 2020, 10(1): 132. DOI: 10.1186/s13613-020-00740-1.
    [39] SHANKAR-HARI M, MADSEN MB, TURGEON AF. Immunoglobulins and sepsis[J]. Intensive Care Med, 2018, 44(11): 1923-1925. DOI: 10.1007/s00134-018-5047-6.
    [40] PERRICONE C, TRIGGIANESE P, BURSI R, et al. Intravenous immunoglobulins at the crossroad of autoimmunity and viral infections[J]. Microorganisms, 2021, 9(1): 121. DOI: 10.3390/microorganisms9010121.
  • 加载中
图(2)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  118
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回