留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线粒体动力学调控对肾缺血-再灌注损伤的影响

闫晓冬 王强

闫晓冬, 王强. 线粒体动力学调控对肾缺血-再灌注损伤的影响[J]. 器官移植, 2021, 12(2): 226-231. doi: 10.3969/j.issn.1674-7445.2021.02.015
引用本文: 闫晓冬, 王强. 线粒体动力学调控对肾缺血-再灌注损伤的影响[J]. 器官移植, 2021, 12(2): 226-231. doi: 10.3969/j.issn.1674-7445.2021.02.015
Yan Xiaodong, Wang Qiang. Effect of the regulation of mitochondrial dynamics on renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 226-231. doi: 10.3969/j.issn.1674-7445.2021.02.015
Citation: Yan Xiaodong, Wang Qiang. Effect of the regulation of mitochondrial dynamics on renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 226-231. doi: 10.3969/j.issn.1674-7445.2021.02.015

线粒体动力学调控对肾缺血-再灌注损伤的影响

doi: 10.3969/j.issn.1674-7445.2021.02.015
基金项目: 

国家自然科学基金 82070765

医学免疫学国家重点实验室开放课题 NKMI2020K05

详细信息
    作者简介:

    闫晓冬,男,1987年生,硕士研究生,研究方向为肾移植,Email:yan140000@163.com

    通讯作者:

    王强,男,1972年生,博士,主任医师,研究方向为肾移植,Email: wq301135@ccmu.edu.cn

  • 中图分类号: R617,R692

Effect of the regulation of mitochondrial dynamics on renal ischemia-reperfusion injury

More Information
  • 摘要: 缺血-再灌注损伤(IRI)是肾移植术后早期移植肾功能障碍的主要原因之一。我国器官移植已经进入公民逝世后器官捐献时代,供者心肺复苏风险增加、低灌注时间和热缺血时间延长等可导致移植肾IRI,影响受者和移植肾的近期及远期临床结局。在IRI等应激状态下,以线粒体分裂和融合的动态调控为主要表现的线粒体动力学机制对线粒体的生物学功能具有重要影响,其损伤引发的细胞凋亡是导致急性肾损伤的关键环节,主要表现为线粒体动力学调控机制失调。本文综述了线粒体动力学调控对肾IRI影响机制的研究进展,以期为改善肾移植临床结局提供参考。
  • [1] 黄世雪, 杨定平. 肾缺血-再灌注损伤的致病机制及治疗方法的研究进展[J]. 临床肾脏病杂志, 2019, 19(7):529-533. DOI: 10.3969/j.issn.1671-2390.2019.07.013.

    HUANG SX, YANG DP. Research advances in pathogenic mechanism and treatments of renal ischemia-reperfusion injury[J]. J Clin Nephrol, 2019, 19(7): 529-533. DOI: 10.3969/j.issn.1671-2390.2019.07.013.
    [2] BELOSLUDTSEV KN, BELOSLUDTSEVA NV, DUBININ MV. Diabetes mellitus, mitochondrial dysfunction and Ca2+-dependent permeability transition pore[J]. Int J Mol Sci, 2020, 21(18): 6559. DOI: 10.3390/ijms21186559.
    [3] SUN X, YANG Y, XIE Y, et al. Protective role of STVNa in myocardial ischemia reperfusion injury by inhibiting mitochondrial fission[J]. Oncotarget, 2017, 9(2): 1898-1905. DOI: 10.18632/oncotarget.22969.
    [4] NIEMANN B, SCHWARZER M, ROHRBACH S. Heart and mitochondria: pathophysiology and implications for cardiac surgeons[J]. Thorac Cardiovasc Surg, 2018, 66(1): 11-19. DOI: 10.1055/s-0037-1615263.
    [5] 杨瀚宇, 王璐, 臧彩霞, 等. 线粒体动力学调控的分子机制及其与β淀粉样蛋白的关系[J]. 中国新药杂志, 2017, 26(19): 2285-2290.

    YANG HY, WANG L, ZANG CX, et al. Molecular mechanism of mitochondrial dynamics regulation and its relationship with β-amyloid[J]. Chin J New Drugs, 2017, 26(19): 2285-2290.
    [6] YU R, LENDAHL U, NISTÉR M, et al. Regulation of mammalian mitochondrial dynamics: opportunities and challenges[J]. Front Endocrinol (Lausanne), 2020, 11: 374. DOI: 10.3389/fendo.2020.00374.
    [7] 高凯, 苏艺婉, 徐望, 等. 线粒体分裂蛋白Drp1与心血管疾病研究进展[J]. 心血管病学进展, 2019, 40(8): 1172-1175. DOI: 10.16806/j.cnki.issn.1004-3934.2019.08.026.

    GAO K, SU YW, XU W, et al. Mitochondrial fission protein Drp1 and cardiovascular diseases[J] Adv Cardiovasc Dis, 2019, 40(8): 1172-1175. DOI: 10.16806/j.cnki.issn.1004-3934.2019.08.026.
    [8] KULEK AR, ANZELL A, WIDER JM, et al. Mitochondrial quality control: role in cardiac models of lethal ischemia-reperfusion injury[J]. Cells, 2020, 9(1): 214. DOI: 10.3390/cells9010214.
    [9] COHEN MM, TARESTE D. Recent insights into the structure and function of mitofusins in mitochondrial fusion[J]. F1000Res, 2018, 7: F1000 Faculty Rev-1983. DOI: 10.12688/f1000research.
    [10] CAO YL, MENG S, CHEN Y, et al. Mfn1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion[J]. Nature, 2017, 542(7641): 372-376. DOI: 10.1038/nature21077.
    [11] GAO S, HU J. Mitochondrial fusion: the machineries in and out[J]. Trends Cell Biol, 2021, 31(1): 62-74. DOI: 10.1016/j.tcb.2020.09.008.
    [12] WANG Q, XU J, LI X, et al. Sirt3 modulate renal ischemia-reperfusion injury through enhancing mitochondrial fusion and activating the ERK-OPA1 signaling pathway[J]. J Cell Physiol, 2019, 234(12): 23495-23506. DOI: 10.1002/jcp.28918.
    [13] TILOKANI L, NAGASHIMA S, PAUPE V, et al. Mitochondrial dynamics: overview of molecular mechanisms[J]. Essays Biochem, 2018, 62(3): 341-360. DOI: 10.1042/EBC20170104.
    [14] 余宗超, 尹良红, 刘璠娜. 从线粒体动力学角度探索肾脏病治疗新策略[J]. 新医学, 2016, 47(4): 205-209. DOI: 10.3969/j.issn.0253-9802.2016.04.001.

    YU ZC, YIN LH, LIU PN. New therapeutic strategy of kidney diseases from the perspective of mitochondrial dynamics[J]. New Med, 2016, 47(4): 205-209. DOI: 10.3969/j.issn.0253-9802.2016.04.001.
    [15] WU S, ZHOU F, ZHANG Z, et al. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins[J]. FEBS J, 2011, 278(6): 941-954. DOI: 10.1111/j.1742-4658.2011.08010.x.
    [16] 俞瑾, 郑宏. 调控线粒体动力学分子机制在心肌保护中的研究进展[J]. 中国科技论文, 2016, 11(6): 645-650. DOI: 10.3969/j.issn.2095-2783.2016.06.011.

    YU J, ZHENG H. Progresses in molecular mechanisms mediating mitochondrial dynamics and their functional roles in myocardial protection[J]. China Sciencepaper, 2016, 11(6): 645-650. DOI: 10.3969/j.issn.2095-2783.2016.06.011.
    [17] 赵强, 刘芬, 杨毅宁. 心力衰竭中心肌细胞线粒体融合与分裂[J]. 中国组织化学与细胞化学杂志, 2018, 27(3): 273-279. DOI: 10.16705/j.cnki.1004-1850.2018.02.013.

    ZHAO Q, LIU F, YANG YN. Mitochondrial fusion and fission of cardiomyocyte in heart failure[J]. Chin J Histochem Cytochem, 2018, 27(3): 273-279. DOI: 10.16705/j.cnki.1004-1850.2018.02.013.
    [18] HAILESELASSIE B, MUKHERJEE R, JOSHI AU, et al. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy[J]. J Mol Cell Cardiol, 2019, 130: 160-169. DOI: 10.1016/j.yjmcc.2019.04.006.
    [19] ONG SB, HAUSENLOY DJ. Mitochondrial dynamics as a therapeutic target for treating cardiac diseases[J]. Handb Exp Pharmacol, 2017, 240: 251-279. DOI: 10.1007/164_2016_7.
    [20] MOSKOWITZOVA K, ORFANY A, LIU K, et al. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(1): L78-L88. DOI: 10.1152/ajplung.00221.
    [21] HWANG SJ, KIM W. Mitochondrial dynamics in the heart as a novel therapeutic target for cardioprotection[J]. Chonnam Med J, 2013, 49(3): 101-107. DOI: 10.4068/cmj.2013.49.3.101.
    [22] ONG SB, SUBRAYAN S, LIM SY, et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury[J]. Circulation, 2010, 121(18): 2012-2022. DOI: 10.1161/CIRCULATIONAHA.109.906610.
    [23] DIN S, MASON M, VÖLKERS M, et al. Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation[J]. Proc Natl Acad Sci U S A, 2013, 110(15): 5969-5974. DOI: 10.1073/pnas.1213294110.
    [24] LIVINGSTON MJ, WANG J, ZHOU J, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys[J]. Autophagy, 2019, 15(12): 2142-2162. DOI: 10.1080/15548627.2019.1615822.
    [25] BLOCH S, OBARI D, GIROUARD H. Angiotensin and neurovascular coupling: beyond hypertension[J]. Microcirculation, 2015, 22(3): 159-167. DOI: 10.1111/micc.12193.
    [26] CID-CASTRO C, HERNÁNDEZ-ESPINOSA DR, MORÁN J. ROS as regulators of mitochondrial dynamics in neurons[J]. Cell Mol Neurobiol, 2018, 38(5): 995-1007. DOI: 10.1007/s10571-018-0584-7.
    [27] PARADIES G, PARADIES V, RUGGIERO FM, et al. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin[J]. Cell Mol Life Sci, 2017, 74(21): 3897-3911. DOI: 10.1007/s00018-017-2619-5.
    [28] 杨瑞, 刘修恒. 肾移植中缺血再灌注损伤的机制及治疗进展[J]. 职业与健康, 2017, 33(24): 3448-3452.

    YANG R, LIU XH. Mechanism and treatment progress of ischemia reperfusion injury in kidney transplantation[J]. Occup Health, 2017, 33(24): 3448-3452.
    [29] ERDOGAN H, FADILLIOGLU E, YAGMURCA M, et al. Protein oxidation and lipid peroxidation after renal ischemia-reperfusion injury: protective effects of erdosteine and N-acetylcysteine[J]. Urol Res, 2006, 34(1): 41-46. DOI: 10.1007/s00240-005-0031-3.
    [30] TIMOTIN A, PISARENKO O, SIDOROVA M, et al. Myocardial protection from ischemia/reperfusion injury by exogenous galanin fragment[J]. Oncotarget, 2017, 8(13): 21241-21252. DOI: 10.18632/oncotarget.15071.
    [31] SERASINGHE MN, CHIPUK JE. Mitochondrial fission in human diseases[J]. Handb Exp Pharmacol, 2017, 240: 159-188. DOI: 10.1007/164_2016_38.
    [32] 陆久维, 翟宇佳, 孙飞. 线粒体钙离子转运的研究进展[J]. 生物物理学报, 2013, 29(3): 167-180. DOI: 10.3724/SP.J.1260.2013.30001.

    LU JW, ZHAI YJ, SUN F. Research progress of mitochondrial calcium ion transport[J]. J Biophy, 2013, 29(3): 167-180. DOI: 10.3724/SP.J.1260.2013.30001.
    [33] 赵光举, 卢中秋, 姚咏明. 哺乳动物细胞线粒体融合-分裂与钙离子信号的关系[J]. 生理科学进展, 2010, 41 (3): 171-176.

    ZHAO GJ, LU ZQ, YAO YM. Advances in mitochondrial fusion-fission and Ca2+ signaling in mammals[J]. Prog Physiol Sci, 2010, 41(3): 171-176.
    [34] MANEECHOTE C, PALEE S, CHATTIPAKORN SC, et al. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury[J]. J Cell Mol Med, 2017, 21(11): 2643-2653. DOI: 10.1111/jcmm.13330.
    [35] SHARP WW. Dynamin-related protein 1 as a therapeutic target in cardiac arrest[J]. J Mol Med (Berl), 2015, 93(3): 243-252. DOI: 10.1007/s00109-015-1257-3
    [36] 郑凯, 杨梅桂, 闫朝君, 等. 线粒体动力学与细胞凋亡[J]. 中国细胞生物学学报, 2019, 41(8): 1467-1476. DOI: 10.11844/cjcb.2019.08.0001.

    ZHENG K, YANG MG, YAN CJ, et al. Mitochondrial dynamics and apoptosis[J]. Chin J Cell Biol, 2019, 41(8): 1467-1476. DOI: 10.11844/cjcb.2019.08.0001.
  • 加载中
图(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回