留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年肾移植研究大盘点:来自中国的声音

罗子寰, 孙启全. 2021年肾移植研究大盘点:来自中国的声音[J]. 器官移植, 2022, 13(3): 325-332. doi: 10.3969/j.issn.1674-7445.2022.03.007
引用本文: 罗子寰, 孙启全. 2021年肾移植研究大盘点:来自中国的声音[J]. 器官移植, 2022, 13(3): 325-332. doi: 10.3969/j.issn.1674-7445.2022.03.007
Luo Zihuan, Sun Qiquan. Research highlights on kidney transplantation in 2021: voices from China[J]. ORGAN TRANSPLANTATION, 2022, 13(3): 325-332. doi: 10.3969/j.issn.1674-7445.2022.03.007
Citation: Luo Zihuan, Sun Qiquan. Research highlights on kidney transplantation in 2021: voices from China[J]. ORGAN TRANSPLANTATION, 2022, 13(3): 325-332. doi: 10.3969/j.issn.1674-7445.2022.03.007

2021年肾移植研究大盘点:来自中国的声音

doi: 10.3969/j.issn.1674-7445.2022.03.007
基金项目: 

国家自然基金面上项目 82100797

国家自然基金面上项目 81970650

国家自然基金面上项目 81800663

国家自然基金面上项目 81800661

国家自然基金面上项目 81800662

国家重点研发计划项目 2018YFA0108804

详细信息
    作者简介:
    通讯作者:

    孙启全,男,1973年生,博士,主任医师,研究方向为肾移植相关疾病,Email:sunqiq@mail.sysu.edu.cn

  • 中图分类号: R617, R692

Research highlights on kidney transplantation in 2021: voices from China

More Information
  • 摘要: 经过近70年的发展,肾移植已成为所有器官移植手术里最成熟,也是成功率最高的手术,但肾移植相关缺血-再灌注损伤、排斥反应、慢性移植肾失功、移植肾纤维化、免疫抑制治疗与感染等仍是影响肾移植受者长期生存的关键因素,相关的基础与临床研究层出不穷。同时,在新型冠状病毒肺炎疫情常态化的背景下,与肾移植相关的研究也是一个新的热点。本文就2021年肾移植基础与临床相关的前沿热点以及肾移植相关的新技术、新视野做一综述,且介绍的研究以中国团队发表的报道为主,更符合中国肾移植的实际情况,以期为我国肾移植相关问题的诊疗提供新的思路和策略。

     

  • [1] FENIG Y, SURESH S, ROCHON C. Long-term survival after kidney transplantation[J]. N Engl J Med, 2022, 386(5): 499. DOI: 10.1056/NEJMc2115207.
    [2] REESE PP, BOUDVILLE N, GARG AX. Living kidney donation: outcomes, ethics, and uncertainty[J]. Lancet, 2015, 385(9981): 2003-2013. DOI: 10.1016/S0140-6736(14)62484-3.
    [3] KAMINSKI H, MARSERES G, YARED N, et al. mTOR inhibitors prevent CMV infection through the restoration of functional αβ and γδ T cells in kidney transplantation[J]. J Am Soc Nephrol, 2022, 33(1): 121-137. DOI: 10.1681/ASN.2020121753.
    [4] OELLERICH M, SHERWOOD K, KEOWN P, et al. Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury[J]. Nat Rev Nephrol, 2021, 17(9): 591-603. DOI: 10.1038/s41581-021-00428-0.
    [5] PONTICELLI C, CAMPISE MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation[J]. Kidney Int, 2021, 100(3): 536-545. DOI: 10.1016/j.kint.2021.04.016.
    [6] RUGGENENTI P, CRAVEDI P, GOTTI E, et al. Mycophenolate mofetil versus azathioprine in kidney transplant recipients on steroid-free, low-dose cyclosporine immunosuppression (ATHENA): a pragmatic randomized trial[J]. PLoS Med, 2021, 18(6): e1003668. DOI: 10.1371/journal.pmed.1003668.
    [7] ASANO Y, DACCACHE J, JAIN D, et al. Innate-like self-reactive B cells infiltrate human renal allografts during transplant rejection[J]. Nat Commun, 2021, 12(1): 4372. DOI: 10.1038/s41467-021-24615-6.
    [8] ISHIYAMA K, ARAKAWA-HOYT J, AGUILAR OA, et al. Mass cytometry reveals single-cell kinetics of cytotoxic lymphocyte evolution in CMV-infected renal transplant patients[J]. Proc Natl Acad Sci U S A, 2022, 119(8): e2116588119. DOI: 10.1073/pnas.2116588119.
    [9] SHEN Q, WANG Y, CHEN J, et al. Single-cell RNA sequencing reveals the immunological profiles of renal allograft rejection in mice[J]. Front Immunol, 2021, 12: 693608. DOI: 10.3389/fimmu.2021.693608.
    [10] LIN Y, WANG L, GE W, et al. Multi-omics network characterization reveals novel microRNA biomarkers and mechanisms for diagnosis and subtyping of kidney transplant rejection[J]. J Transl Med, 2021, 19(1): 346. DOI: 10.1186/s12967-021-03025-8.
    [11] BENOTMANE I, SOLIS M, VELAY A, et al. Intravenous immunoglobulin as a preventive strategy against BK virus viremia and BKV-associated nephropathy in kidney transplant recipients-results from a proof-of-concept study[J]. Am J Transplant, 2021, 21(1): 329-337. DOI: 10.1111/ajt.16233.
    [12] KOYRO TF, KRAUS E, LUNEMANN S, et al. Upregulation of HLA-F expression by BK polyomavirus infection induces immune recognition by KIR3DS1-positive natural killer cells[J]. Kidney Int, 2021, 99(5): 1140-1148. DOI: 10.1016/j.kint.2020.12.014.
    [13] XU L, QU H, ALONSO DG, et al. Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples[J]. Biosens Bioelectron, 2021, 175: 112908. DOI: 10.1016/j.bios.2020.112908.
    [14] GERHARDT LMS, LIU J, KOPPITCH K, et al. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury[J]. Proc Natl Acad Sci U S A, 2021, 118(27): e2026684118. DOI: 10.1073/pnas.2026684118.
    [15] YAN R, REN J, WEN J, et al. Enzyme therapeutic for ischemia and reperfusion injury in organ transplantation[J]. Adv Mater, 2022, 34(1): e2105670. DOI: 10.1002/adma.202105670.
    [16] ZHANG D, WANG Y, ZENG S, et al. Integrated analysis of prognostic genes associated with ischemia-reperfusion injury in renal transplantation. [J] Front Immunol, 2021, 12: 747020. DOI: 10.3389/fimmu.2021.747020.
    [17] KE J, ZHAO F, LUO Y, et al. MiR-124 negatively regulated PARP1 to alleviate renal ischemia-reperfusion injury by inhibiting TNFα/RIP1/RIP3 pathway[J]. Int J Biol Sci, 2021, 17(8): 2099-2111. DOI: 10.7150/ijbs.58163.
    [18] ZHENG H, ZHANG Y, LI L, et al. Depletion of Toll-like receptor-9 attenuates renal tubulointerstitial fibrosis after ischemia-reperfusion injury[J]. Front Cell Dev Biol, 2021, 9: 641527. DOI: 10.3389/fcell.2021.641527.
    [19] ZHENG H, ZHANG Y, HE J, et al. Hydroxychloroquine inhibits macrophage activation and attenuates renal fibrosis after ischemia-reperfusion injury[J]. Front Immunol, 2021, 12: 645100. DOI: 10.3389/fimmu.2021.645100.
    [20] LI Y, XU B, YANG J, et al. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release[J]. Pharmacol Res, 2021, 173: 105867. DOI: 10.1016/j.phrs.2021.105867.
    [21] LOUIS K, FADAKAR P, MACEDO C, et al. Concomitant loss of regulatory T and B cells is a distinguishing immune feature of antibody-mediated rejection in kidney transplantation[J]. Kidney Int, 2022, DOI: 10.1016/j.kint.2021.12.027[Epub ahead of print].
    [22] SIREN EMJ, LUO HD, TAM F, et al. Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers[J]. Nat Biomed Eng, 2021, 5(10): 1202-1216. DOI: 10.1038/s41551-021-00777-y.
    [23] WANG ZG, XU HE, CHENG FM, et al. Donor BMSC-derived small extracellular vesicles relieve acute rejection post-renal allograft through transmitting Loc108349490 to dendritic cells[J]. Aging Cell, 2021, 20(10): e13461. DOI: 10.1111/acel.13461.
    [24] CHENG H, XU B, ZHANG L, et al. Bortezomib alleviates antibody-mediated rejection in kidney transplantation by facilitating Atg5 expression[J]. J Cell Mol Med, 2021, 25(23): 10939-10949. DOI: 10.1111/jcmm.16998.
    [25] YANG Z, HAN F, LIAO T, et al. Artemisinin attenuates transplant rejection by inhibiting multiple lymphocytes and prolongs cardiac allograft survival[J]. Front Immunol, 2021, 12: 634368. DOI: 10.3389/fimmu.2021.634368.
    [26] YANG Y, NANKIVELL BJ, HUA W, et al. Renal tubular cell binding of β-catenin to TCF1 versus FoxO1 is associated with chronic interstitial fibrosis in transplanted kidneys[J]. Am J Transplant, 2021, 21(2): 727-739. DOI: 10.1111/ajt.16287.
    [27] YI Z, SALEM F, MENON MC, et al. Deep learning identified pathological abnormalities predictive of graft loss in kidney transplant biopsies[J]. Kidney Int, 2022, 101(2): 288-298. DOI: 10.1016/j.kint.2021.09.028.
    [28] GUI Z, SUO C, WANG Z, et al. Impaired ATG16L-dependent autophagy promotes renal interstitial fibrosis in chronic renal graft dysfunction through inducing EndMT by NF-κB signal pathway[J]. Front Immunol, 2021, 12: 650424. DOI: 10.3389/fimmu.2021.650424.
    [29] SUO C, GUI Z, WANG Z, et al. Bortezomib limits renal allograft interstitial fibrosis by inhibiting NF-κB/TNF-α/Akt/mTOR/P70S6K/Smurf2 pathway via IκBα protein stabilization[J]. Clin Sci (Lond), 2021, 135(1): 53-69. DOI: 10.1042/CS20201038.
    [30] LI Y, AN H, SHEN C, et al. Deep phenotyping of T cell populations under long-term treatment of tacrolimus and rapamycin in patients receiving renal transplantations by mass cytometry[J]. Clin Transl Med, 2021, 11(11): e629. DOI: 10.1002/ctm2.629.
    [31] LIU Y, LIU X, ZHOU S, et al. Single-cell profiling of kidney transplant recipients with immunosuppressive treatment reveals the dynamic immune characteristics[J]. Front Immunol, 2021, 12: 639942. DOI: 10.3389/fimmu.2021.639942.
    [32] ZHUANG Q, LI H, PENG B, et al. Single-cell transcriptomic analysis of peripheral blood reveals a novel B-cell subset in renal allograft recipients with accommodation[J]. Front Pharmacol, 2021, 12: 706580. DOI: 10.3389/fphar.2021.706580.
    [33] KITCHING AR, HICKEY MJ. Immune cell behaviour and dynamics in the kidney - insights from in vivo imaging[J]. Nat Rev Nephrol, 2022, 18(1): 22-37. DOI: 10.1038/s41581-021-00481-9.
    [34] NGUYEN VD, VAN NGUYEN H, SEO JW, et al. Prediction of acute rejection in kidney transplanted patients based on the point-of-care isothermal molecular diagnostics platform[J]. Biosens Bioelectron, 2022, 199: 113877. DOI: 10.1016/j.bios.2021.113877.
    [35] HAN F, SUN Q, HUANG Z, et al. Donor plasma mitochondrial DNA is associated with antibody-mediated rejection in renal allograft recipients[J]. Aging (Albany NY), 2021, 13(6): 8440-8453. DOI: 10.18632/aging.202654.
    [36] YE Y, HAN F, MA M, et al. Plasma macrophage migration inhibitory factor predicts graft function following kidney transplantation: a prospective cohort study[J]. Front Med (Lausanne), 2021, 8: 708316. DOI: 10.3389/fmed.2021.708316.
    [37] SENEV A, VAN LOON E, LERUT E, et al. Risk factors, histopathological features, and graft outcome of transplant glomerulopathy in the absence of donor-specific HLA antibodies[J]. Kidney Int, 2021, 100(2): 401-414. DOI: 10.1016/j.kint.2021.01.029.
    [38] WEI Y, CHEN X, ZHANG H, et al. Efficacy and safety of bone marrow-derived mesenchymal stem cells for chronic antibody-mediated rejection after kidney transplantation- a single-arm, two-dosing-regimen, phase Ⅰ/Ⅱ study[J]. Front Immunol, 2021, 12: 662441. DOI: 10.3389/fimmu.2021.662441.
    [39] ORANDI BJ, LONZE BE, JACKSON A, et al. Splenic irradiation for the treatment of severe antibody-mediated rejection[J]. Am J Transplant, 2016, 16(10): 3041-3045. DOI: 10.1111/ajt.13882.
    [40] ZHU L, GUO Z, SA R, et al. Case report: splenic irradiation for the treatment of chronic active antibody-mediated rejection in kidney allograft recipients with de novo donor-specific antibodies[J]. Front Immunol, 2021, 12: 661614. DOI: 10.3389/fimmu.2021.661614.
    [41] SHE S, WU X, ZHENG D, et al. PSMP/MSMP promotes hepatic fibrosis through CCR2 and represents a novel therapeutic target[J]. J Hepatol, 2020, 72(3): 506-518. DOI: 10.1016/j.jhep.2019.09.033.
    [42] ZHAN P, LI H, HAN M, et al. PSMP is discriminative for chronic active antibody-mediated rejection and associate with intimal arteritis in kidney transplantation[J]. Front Immunol, 2021, 12: 661911. DOI: 10.3389/fimmu.2021.661911.
    [43] LUO Y, LUO F, ZHANG K, et al. Elevated circulating IL-10 producing breg, but not regulatory B cell levels, restrain antibody-mediated rejection after kidney transplantation[J]. Front Immunol, 2021, 11: 627496. DOI: 10.3389/fimmu.2020.627496.
    [44] WANG XD, LIU JP, SONG TR, et al. Kidney transplantation from hepatitis B surface antigen (HBsAg)-positive living donors to HBsAg-negative recipients: clinical outcomes at a high-volume center in China[J]. Clin Infect Dis, 2021, 72(6): 1016-1023. DOI: 10.1093/cid/ciaa178.
    [45] YU Y, WEI C, LYU J, et al. Donor-derived human parvovirus B19 infection in kidney transplantation[J]. Front Cell Infect Microbiol, 2021, 11: 753970. DOI: 10.3389/fcimb.2021.753970.
    [46] TANG JL, ABBASI K. What can the world learn from China's response to COVID-19?[J]. BMJ, 2021, 375: n2806. DOI: 10.1136/bmj.n2806.
    [47] CHEN JJ, KUO G, LEE TH, et al. Incidence of mortality, acute kidney injury and graft loss in adult kidney transplant recipients with coronavirus disease 2019: systematic review and Meta-analysis[J]. J Clin Med, 2021, 10(21): 5162. DOI: 10.3390/jcm10215162.
    [48] AO G, WANG Y, QI X, et al. The association between severe or death COVID-19 and solid organ transplantation: a systematic review and Meta-analysis[J]. Transplant Rev (Orlando), 2021, 35(3): 100628. DOI: 10.1016/j.trre.2021.100628.
    [49] CHEN T, LI X, LI Q, et al. COVID-19 vaccination hesitancy and associated factors among solid organ transplant recipients in China[J]. Hum Vaccin Immunother, 2021, 17(12): 4999-5006. DOI: 10.1080/21645515.2021.1984133.
    [50] SWAI J, GUI M, LONG M, et al. Humoral and cellular immune response to severe acute respiratory syndrome coronavirus-2 vaccination in haemodialysis and kidney transplant patients[J]. Nephrology (Carlton), 2022, 27(1): 7-24. DOI: 10.1111/nep.13974.
    [51] CAI Z, CAI X, SONG Y, et al. Psychological distress and its association with quality of life in organ transplant recipients during COVID-19 pandemic[J]. Front Psychiatry, 2021, 12: 690295. DOI: 10.3389/fpsyt.2021.690295.
  • 加载中
计量
  • 文章访问数:  738
  • HTML全文浏览量:  446
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回