留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

他克莫司转运蛋白基因多态性在器官移植中的研究进展

张函舒 宋沧桑 张阳 李兴德

张函舒, 宋沧桑, 张阳, 等. 他克莫司转运蛋白基因多态性在器官移植中的研究进展[J]. 器官移植, 2021, 12(4): 496-502. doi: 10.3969/j.issn.1674-7445.2021.04.019
引用本文: 张函舒, 宋沧桑, 张阳, 等. 他克莫司转运蛋白基因多态性在器官移植中的研究进展[J]. 器官移植, 2021, 12(4): 496-502. doi: 10.3969/j.issn.1674-7445.2021.04.019
Zhang Hanshu, Song Cangsang, Zhang Yang, et al. Research progress on the gene polymorphism of tacrolimus transporter in organ transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 496-502. doi: 10.3969/j.issn.1674-7445.2021.04.019
Citation: Zhang Hanshu, Song Cangsang, Zhang Yang, et al. Research progress on the gene polymorphism of tacrolimus transporter in organ transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 496-502. doi: 10.3969/j.issn.1674-7445.2021.04.019

他克莫司转运蛋白基因多态性在器官移植中的研究进展

doi: 10.3969/j.issn.1674-7445.2021.04.019
基金项目: 

云南省器官移植临床医学中心开放课题 2020SYZ-Z-023

云南省器官移植临床医学中心开放课题 2020SYZ-Z-031

云南省卫生健康委员会医学领军人才培养计划 L-2018012

昆明市卫生科技人才培养项目 2018-SW(省)-05

昆明市卫生科技人才培养暨技术中心建设项目 2018-SW(技)-12

详细信息
    作者简介:

    张函舒,女,1994年生,硕士研究生,药师,研究方向为临床药学,Email:602407173@qq.com

    通讯作者:

    宋沧桑,女,1970年生,主任药师,研究方向为临床药学,Email:songcs163@163.com

  • 中图分类号: R617, R979.5, Q344+.12

Research progress on the gene polymorphism of tacrolimus transporter in organ transplantation

More Information
  • 摘要: 他克莫司(Tac)是器官移植术后常用的免疫抑制剂,具有良好的免疫抑制效果,但Tac的药代动力学存在较大个体差异,其中基因多态性是主要的影响因素。近年来,药物转运蛋白基因多态性成为新的研究热点,但转运蛋白基因多态性对Tac药代动力学的影响尚存在争议,因此探讨转运蛋白基因多态性与Tac血药浓度的相关性对于指导Tac个体化免疫抑制治疗具有重要的意义。本文综述三磷酸腺苷结合盒式(ABC)转运蛋白基因多态性、溶质载体(SLC)转运蛋白基因多态性在器官移植中的研究进展,归纳总结转运蛋白基因多态性与Tac血药浓度的相关性,以期为Tac个体化用药提供参考。

     

  • [1] COZZI E, COLPO A, DE SILVESTRO G. The mechanisms of rejection in solid organ transplantation[J]. Transfus Apher Sci, 2017, 56(4): 498-505. DOI: 10.1016/j.transci.2017.07.005.
    [2] LOUPY A, LEFAUCHEUR C. Antibody-mediated rejection of solid-organ allografts[J]. N Engl J Med, 2018, 379(12): 1150-1160. DOI: 10.1056/NEJMra1802677.
    [3] ZHANG X, LIN G, TAN L, et al. Current progress of tacrolimus dosing in solid organ transplant recipients: pharmacogenetic considerations[J]. Biomed Pharmacother, 2018, 102: 107-114. DOI: 10.1016/j.biopha.2018.03.054.
    [4] SCHUTTE-NUTGEN K, THOLKING G, SUWELACK B, et al. Tacrolimus - pharmacokinetic considerations for clinicians[J]. Curr Drug Metab, 2018, 19(4): 342-350. DOI: 10.2174/1389200219666180101104159.
    [5] OBERBAUER R, BESTARD O, FURIAN L, et al. Optimization of tacrolimus in kidney transplantation: new pharmacokinetic perspectives[J]. Transplant Rev (Orlando), 2020, 34(2): 100531. DOI: 10.1016/j.trre.2020.100531.
    [6] BRUNET M, VAN GELDER T, ÅSBERG A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report[J]. Ther Drug Monit, 2019, 41(3): 261-307. DOI: 10.1097/FTD.0000000000000640.
    [7] Pharmgkb. Clinical annotation for rs776746 related to tacrolimus- dosage/pk (1A)[EB/OL]. [2018-04-24]. https://www.pharmgkb.org/chemical/PA451578/clinicalAnnotation/981203719.
    [8] 陈晨, 张晏洁, 贺小露, 等. 他克莫司个体化用药指南解读[J]. 医学研究生学报, 2017, 30(4): 342-347. DOI: 10.16571/j.cnki.1008-8199.2017.04.002.

    CHEN C, ZHANG YJ, HE XL, et al. Interpretation of tacrolimus guidelines for individualized medication[J]. J Med Postgrad, 2017, 30(4): 342-347. DOI: 10.16571/j.cnki.1008-8199.2017.04.002.
    [9] TRON C, ALLARD M, PETITCOLLIN A, et al. Tacrolimus diffusion across the peripheral mononuclear blood cell membrane: impact of drug transporters[J]. Fundam Clin Pharmacol, 2019, 33(1): 113-121. DOI: 10.1111/fcp.12412.
    [10] LIU X. Transporter-mediated drug-drug interactions and their significance[J]. Adv Exp Med Biol, 2019, 1141: 241-291. DOI: 10.1007/978-981-13-7647-4_5.
    [11] CHU X, LIAO M, SHEN H, et al. Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: perspectives from the International Transporter Consortium[J]. Clin Pharmacol Ther, 2018, 104(5): 836-864. DOI: 10.1002/cpt.1216.
    [12] WILLIAMSON B, RILEY RJ. Hepatic transporter drug-drug interactions: an evaluation of approaches and methodologies[J]. Expert Opin Drug Metab Toxicol, 2017, 13(12): 1237-1250. DOI: 10.1080/17425255.2017.1404028.
    [13] NIGAM SK. What do drug transporters really do?[J]. Nat Rev Drug Discov, 2015, 14(1): 29-44. DOI: 10.1038/nrd4461.
    [14] LEE W, HA JM, SUGIYAMA Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides[J]. J Biol Chem, 2020, 295(50): 17349-17364. DOI: 10.1074/jbc.REV120.009132.
    [15] DARNEY K, TURCO L, BURATTI FM, et al. Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment[J]. Food Chem Toxicol, 2020, 140: 111305. DOI: 10.1016/j.fct.2020.111305.
    [16] YU M, LIU M, ZHANG W, et al. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation[J]. Curr Drug Metab, 2018, 19(6): 513-522. DOI: 10.2174/1389200219666180129151948.
    [17] WANG R, SUN X, DENG YS, et al. Effects of MDR1 1236C > T-2677G > T-3435C > T polymorphisms on the intracellular accumulation of tacrolimus, cyclosporine A, sirolimus and everolimus[J]. Xenobiotica, 2019, 49(11): 1373-1378. DOI: 10.1080/00498254.2018.1563732.
    [18] MA G, HUANG X, BI Y, et al. Association study between ABCB1, ABCB6 and ABCG1 polymorphisms and major depressive disorder in the Chinese Han population[J]. Psychiatry Res, 2018, 270: 1170-1171. DOI: 10.1016/j.psychres.2018.05.045.
    [19] GENVIGIR FD, SALGADO PC, FELIPE CR, et al. Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients[J]. Pharmacogenet Genomics, 2016, 26(10): 462-472. DOI: 10.1097/FPC.0000000000000237.
    [20] PRASAD N, JAISWAL A, BEHERA MR, et al. Melding pharmacogenomic effect of MDR1 and CYP3A5 gene polymorphism on tacrolimus dosing in renal transplant recipients in Northern India[J]. Kidney Int Rep, 2019, 5(1): 28-38. DOI: 10.1016/j.ekir.2019.09.013.
    [21] 胡楠, 汤雨帆, 钱卿, 等. CYP3A5和ABCB1基因多态性对肾移植患者术后初期他克莫司剂量、浓度及肾功能的影响[J]. 中南药学, 2019, 17(4): 489-494. DOI: 10.7539/j.issn.1672-2981.2019.04.002.

    HU N, TANG YF, QIAN Q, et al. Effect of CYP3A5 and ABCB1 polymorphism on dosage and concentration of tacrolimus and renal function in renal transplant recipients at early postoperative period[J]. Central South Pharm, 2019, 17(4): 489-494. DOI: 10.7539/j.issn.1672-2981.2019.04.002.
    [22] RIEGERSPERGER M, PLISCHKE M, STEINHAUSER C, et al. The effect of ABCB1 polymorphisms on serial tacrolimus concentrations in stable Austrian long-term kidney transplant recipients[J]. Clin Lab, 2016, 62(10): 1965-1972. DOI: 10.7754/Clin.Lab.2016.160221.
    [23] SU L, YIN L, YANG J, et al. Correlation between gene polymorphism and blood concentration of calcineurin inhibitors in renal transplant recipients: an overview of systematic reviews[J]. Medicine (Baltimore), 2019, 98(26): e16113. DOI: 10.1097/MD.0000000000016113.
    [24] 刘璐, 宋沧桑, 张阳, 等. MDR1 C3435T基因多态性与肾移植患者他克莫司血药浓度关系的Meta分析[J]. 中国医院药学杂志, 2018, 38(23): 2440-2446. DOI: 10.13286/j.cnki.chinhosppharmacyj.2018.23.12.

    LIU L, SONG CS, ZHANG Y, et al. A Meta-analysis of correlation between MDR1 C3435T genotypes and blood concentration of tacrolimus in renal transplant recipients[J]. Chin J Hosp Pharm, 2018, 38(23): 2440-2446. DOI: 10.13286/j.cnki.chinhosppharmacyj.2018.23.12.
    [25] PENG W, LIN Y, ZHANG H, et al. Effect of ABCB1 3435C > T genetic polymorphism on pharmacokinetic variables of tacrolimus in adult renal transplant recipients: a systematic review and Meta-analysis[J]. Clin Ther, 2020, 42(10): 2049-2065. DOI: 10.1016/j.clinthera.2020.07.016.
    [26] NAUSHAD SM, PAVANI A, RUPASREE Y, et al. Recipient ABCB1, donor and recipient CYP3A5 genotypes influence tacrolimus pharmacokinetics in liver transplant cases[J]. Pharmacol Rep, 2019, 71(3): 385-392. DOI: 10.1016/j.pharep.2019.01.006.
    [27] CAPRON A, MOURAD M, DE MEYER M, et al. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation[J]. Pharmacogenomics, 2010, 11(5): 703-714. DOI: 10.2217/pgs.10.43.
    [28] HAN SS, YANG SH, KIM MC, et al. Monitoring the intracellular tacrolimus concentration in kidney transplant recipients with stable graft function[J]. PLoS One, 2016, 11(4): e0153491. DOI: 10.1371/journal.pone.0153491.
    [29] NOLL BD, COLLER JK, SOMOGYI AA, et al. Validation of an LC-MS/MS method to measure tacrolimus in rat kidney and liver tissue and its application to human kidney biopsies[J]. Ther Drug Monit, 2013, 35(5): 617-623. DOI: 10.1097/FTD.0b013e31828e8162.
    [30] OGASAWARA K, CHITNIS SD, GOHH RY, et al. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients[J]. Clin Pharmacokinet, 2013, 52(9): 751-762. DOI: 10.1007/s40262-013-0069-2.
    [31] GENVIGIR FDV, NISHIKAWA AM, FELIPE CR, et al. Influence of ABCC2, CYP2C8, and CYP2J2 polymorphisms on tacrolimus and mycophenolate sodium-based treatment in Brazilian kidney transplant recipients[J]. Pharmacotherapy, 2017, 37(5): 535-545. DOI: 10.1002/phar.1928.
    [32] PULK RA, SCHLADT DS, OETTING WS, et al. Multigene predictors of tacrolimus exposure in kidney transplant recipients[J]. Pharmacogenomics, 2015, 16(8): 841-854. DOI: 10.2217/pgs.15.42.
    [33] GENVIGIR FDV, CAMPOS-SALAZAR AB, FELIPE CR, et al. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimus-based therapy[J]. Pharmacogenomics, 2020, 21(1): 7-21. DOI: 10.2217/pgs-2019-0120.
    [34] LI TT, AN JX, XU JY, et al. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the liver[J]. World J Clin Cases, 2019, 7(23): 3915-3933. DOI: 10.12998/wjcc.v7.i23.3915.
    [35] OSWALD S. Organic anion transporting polypeptide (OATP) transporter expression, localization and function in the human intestine[J]. Pharmacol Ther, 2019, 195: 39-53. DOI: 10.1016/j.pharmthera.2018.10.007.
    [36] HSUEH CH, YOSHIDA K, ZHAO P, et al. Identification and quantitative assessment of uremic solutes as inhibitors of renal organic anion transporters, OAT1 and OAT3[J]. Mol Pharm, 2016, 13(9): 3130-3140. DOI: 10.1021/acs.molpharmaceut.6b00332.
    [37] PALLIO G, IRRERA N, BITTO A, et al. Failure of achieving tacrolimus target blood concentration might be avoided by a wide genotyping of transplanted patients: evidence from a retrospective study[J]. J Pers Med, 2020, 10(2): 47. DOI: 10.3390/jpm10020047.
    [38] 刘澍, 陈荣新, 李军, 等. SLCO1B1基因多态性与肾移植患者他克莫司浓度相关性的研究[J]. 药学学报, 2016, 51(8): 1240-1244. DOI: 10.16438/j.0513-4870.2016-0027.

    LIU P, CHEN RX, LI J, et al. Associations of SLCO1B1 polymorphisms with tacrolimus concentrations in Chinese renal transplant recipients[J]. Acta Pharm Sin, 2016, 51(8): 1240-1244. DOI: 10.16438/j.0513-4870.2016-0027.
    [39] WU Y, FANG F, WANG Z, et al. The influence of recipient SLCO1B1 rs2291075 polymorphism on tacrolimus dose-corrected trough concentration in the early period after liver transplantation[J]. Eur J Clin Pharmacol, 2021, 77(6): 859-867. DOI: 10.1007/s00228-020-03058-w.
    [40] WANG J, HUANG L, GAO P, et al. Diltiazem on tacrolimus exposure and dose sparing in Chinese pediatric primary nephrotic syndrome: impact of CYP3A4, CYP3A5, ABCB1, and SLCO1B3 polymorphisms[J]. Eur J Clin Pharmacol, 2021, 77(1): 71-77. DOI: 10.1007/s00228-020-02977-y.
    [41] ALAM K, CROWE A, WANG X, et al. Regulation of organic anion transporting polypeptides (OATP) 1B1- and OATP1B3-mediated transport: an updated review in the context of OATP-mediated drug-drug interactions[J]. Int J Mol Sci, 2018, 19(3): 855. DOI: 10.3390/ijms19030855.
    [42] BOIVIN AA, CARDINAL H, BARAMA A, et al. Influence of SLCO1B3 genetic variations on tacrolimus pharmacokinetics in renal transplant recipients[J]. Drug Metab Pharmacokinet, 2013, 28(3): 274-277. DOI: 10.2133/dmpk.dmpk-12-sh-093.
    [43] 王翔, 余爱荣, 辛华雯. 相关基因多态性与肾移植术后他克莫司疗效的关系研究进展[J]. 中国药师, 2020, 23(5): 938-941. DOI: 10.3969/j.issn.1008-049X.2020.05.037.

    WANG X, YU AR, XIN HW. Advances in the relationship between related gene polymorphisms and efficacy of tacrolimus after renal transplantation[J]. Chin Pharm, 2020, 23(5): 938-941. DOI: 10.3969/j.issn.1008-049X.2020.05.037.
  • 加载中
图(1)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  51
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-24
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回