留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丹红注射液改善神经干细胞移植治疗脑缺血损伤效果的机制研究

王家传 余学问 徐华 李振国 徐洲稳 邵牧民

王家传, 余学问, 徐华, 等. 丹红注射液改善神经干细胞移植治疗脑缺血损伤效果的机制研究[J]. 器官移植, 2021, 12(4): 428-435. doi: 10.3969/j.issn.1674-7445.2021.04.009
引用本文: 王家传, 余学问, 徐华, 等. 丹红注射液改善神经干细胞移植治疗脑缺血损伤效果的机制研究[J]. 器官移植, 2021, 12(4): 428-435. doi: 10.3969/j.issn.1674-7445.2021.04.009
Wang Jiachuan, Yu Xuewen, Xu Hua, et al. Mechanism of Danhong injection in improving therapeutic effect of neural stem cell transplantation for cerebral ischemia injury[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 428-435. doi: 10.3969/j.issn.1674-7445.2021.04.009
Citation: Wang Jiachuan, Yu Xuewen, Xu Hua, et al. Mechanism of Danhong injection in improving therapeutic effect of neural stem cell transplantation for cerebral ischemia injury[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 428-435. doi: 10.3969/j.issn.1674-7445.2021.04.009

丹红注射液改善神经干细胞移植治疗脑缺血损伤效果的机制研究

doi: 10.3969/j.issn.1674-7445.2021.04.009
基金项目: 

国家自然科学基金面上项目 81774053

深圳市科技计划项目 JCYJ20170307155449972

详细信息
    通讯作者:

    王家传,男,1973年生,医学博士,博士后,副研究员,研究方向为干细胞移植与神经损伤修复,Email:jcwang0000@126.com

  • 中图分类号: R617, R28, R743.3

Mechanism of Danhong injection in improving therapeutic effect of neural stem cell transplantation for cerebral ischemia injury

More Information
  • 摘要:   目的  探讨丹红注射液能否通过调控核因子E2相关因子2(Nrf2)信号通路增强神经干细胞(NSC)移植修复脑缺血损伤的治疗效果。  方法  40只雄性SD大鼠随机分为NSC移植治疗组(NSC组)、丹红注射液组(DH组)、NSC+丹红注射液组(N+D组)、NSC+丹红注射液组+ML385组(N+D+M组)和PBS对照组(PBS组),每组8只。所有大鼠均采用大脑中动脉栓塞法建立脑缺血模型,栓塞1.5 h后进行再灌注。再灌注后3 d对各组大鼠进行相应处理。在NSC移植术前和术后1、2、4周进行神经功能评分。术后4周后处死大鼠,检测氧化应激相关指标,并用免疫荧光染色检测神经元特异核蛋白(NeuN)和血管性血友病因子(vWF)的表达情况。  结果  在NSC移植术前,各组大鼠的神经功能评分比较,差异无统计学意义(P > 0.05)。术后1、2、4周时,NSC组、DH组和N+D组大鼠的神经功能评分较PBS组和N+D+M组均降低(均为P < 0.05)。与PBS组和N+D+M组比较,NSC组、DH组和N+D组的丙二醛(MDA)水平均降低,超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPX)水平均升高(均为P < 0.05);N+D+M组的GPX水平较PBS组降低(P < 0.05)。免疫荧光染色结果显示,移植到大鼠脑内的NSC能够迁移至脑梗死周边区域并存活,并表达神经元标志物NeuN和新生血管标志物vWF,而N+D+M组的NSC存活数量较其他组明显减少。  结论  丹红注射液可能通过调控Nrf2信号通路改善干细胞移植微环境,增加移植干细胞的存活率,提升NSC移植治疗脑缺血损伤效果。

     

  • 图  1  GPF阳性NSC球的显微镜下表现

    注:A、B图示第1代NSC球,C、D图示第5代NSC球; A、C图为光学显微镜下表现(×200),B、D图为荧光倒置显微镜下表现(免疫荧光,×200)。

    Figure  1.  The findings of GPF positive NSC sphere under microscope

    图  2  各组大鼠NSC移植术前、术后神经功能评分比较

    注:与PBS组比较,aP < 0.05;与N+D+M组比较,bP < 0.05。

    Figure  2.  Comparison of nerve function scores of rats before and after NSC transplantation amongeach group

    图  3  各组大鼠NSC移植术前、术后氧化应激相关指标比较

    注:与PBS组比较,aP < 0.05;与N+D+M组比较,bP < 0.05。

    Figure  3.  Comparison of oxidative stress related indexes of rats before and after NSC transplantation among each group

    图  4  NSC移植术后4周大鼠脑内NSC的存活和分布情况(免疫荧光,×200)

    注:A图为神经元标志物NeuN的免疫荧光染色; B图为新生血管标志物vWF的免疫荧光染色。

    Figure  4.  Survival and distribution of NSC in rat brain at 4 weeks after NSC transplantation

  • [1] 戴玥, 郑佳, 郑黎强. 抗氧化物质和自由基产物与脑卒中关系的研究进展[J]. 实用医学杂志, 2019, 35(3): 489-491. DOI: 10.3969/j.issn.1006-5725.2019.03.035.

    DAI Y, ZHENG J, ZHENG LQ. Research progress on the relationship between antioxidants, free radical products and stroke[J]. J Pract Med, 2019, 35(3): 489-491. DOI: 10.3969/j.issn.1006-5725.2019.03.035.
    [2] RYU S, LEE SH, KIM SU, et al. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain[J]. Neural Regen Res, 2016, 11(2): 298-304. DOI: 10.4103/1673-5374.177739.
    [3] QIAO LY, HUANG FJ, ZHAO M, et al. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients[J]. Cell Transplant, 2014, 23(Suppl 1): S65-S72. DOI: 10.3727/096368914X684961.
    [4] CHUNG JW, CHANG WH, BANG OY, et al. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke[J]. Neurology, 2021, 96(7): e1012-e1023. DOI: 10.1212/WNL.0000000000011440.
    [5] BHATIA V, GUPTA V, KHURANA D, et al. Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous stem cells in subacute ischemic stroke[J]. AJNR Am J Neuroradiol, 2018, 39(5): 899-904. DOI: 10.3174/ajnr.A5586.
    [6] DENG L, PENG Q, WANG H, et al. Intrathecal injection of allogenic bone marrow-derived mesenchymal stromal cells in treatment of patients with severe ischemic stroke: study protocol for a randomized controlled observer-blinded trial[J]. Transl Stroke Res, 2019, 10(2): 170-177. DOI: 10.1007/s12975-018-0634-y.
    [7] FANG Y, LIU X, ZHAO L, et al. RhGLP-1 (7-36) protects diabetic rats against cerebral ischemia-reperfusion injury via up-regulating expression of Nrf2/HO-1 and increasing the activities of SOD[J]. Korean J Physiol Pharmacol, 2017, 21(5): 475-485. DOI: 10.4196/kjpp.2017.21.5.475.
    [8] DING Y, CHEN M, WANG M, et al. Posttreatment with 11-Keto-β-boswellic acid ameliorates cerebral ischemia-reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism[J]. Mol Neurobiol, 2015, 52(3): 1430-1439. DOI: 10.1007/s12035-014-8929-9.
    [9] YANG T, SUN Y, LI Q, et al. Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: the role of Nrf2[J]. Exp Neurol, 2020, 325: 113142. DOI: 10.1016/j.expneurol.2019.113142.
    [10] TIAN Y, SU Y, YE Q, et al. Silencing of TXNIP alleviated oxidative stress injury by regulating MAPK-Nrf2 axis in ischemic stroke[J]. Neurochem Res, 2020, 45(2): 428-436. DOI: 10.1007/s11064-019-02933-y.
    [11] CUI HY, ZHANG XJ, YANG Y, et al. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling[J]. Neural Regen Res, 2018, 13(12): 2119-2128. DOI: 10.4103/1673-5374.241463.
    [12] ZOU JB, ZHANG XF, WANG J, et al. The therapeutic efficacy of Danhong injection combined with percutaneous coronary intervention in acute coronary syndrome: a systematic review and Meta-analysis[J]. Front Pharmacol, 2018, 9: 550. DOI: 10.3389/fphar.2018.00550.
    [13] 冯荣伟, 刘婷婷, 刘建芳, 等. 活血化瘀类药物治疗急性脑梗死的疗效及经济学评价[J]. 西北药学杂志, 2020, 35(1): 139-142. DOI: 10.3969/j.issn.1004-2407.2020.01.032.

    FENG RW, LIU TT, LIU JF, et al. Efficacy and pharmacy economic analysis of blood-activating stasis-removing drugs for acute cerebral infarction[J]. Northwest Pharm J, 2020, 35(1): 139-142. DOI: 10.3969/j.issn.1004-2407.2020.01.032.
    [14] LI SN, LI P, LIU WH, et al. Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway[J]. Biomed Pharmacother, 2019, 120: 109538. DOI: 10.1016/j.biopha. 2019.109538.
    [15] FENG C, WAN H, ZHANG Y, et al. Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway[J]. Front Pharmacol, 2020, 11: 298. DOI: 10.3389/fphar.2020.00298.
    [16] HUANG C, HUANG C, ZHOU G. Danhong injection for the treatment of early diabetic nephropathy: a protocol of systematic review and Meta-analysis[J]. Medicine (Baltimore), 2020, 99(43): e22716. DOI: 10.1097/MD. 0000000000022716.
    [17] WANG G, HAN B, SHEN L, et al. Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke[J]. EBioMedicine, 2020, 52: 102660. DOI: 10.1016/j.ebiom.2020.102660.
    [18] 余学问, 徐华, 黄忠华, 等. HIF-2α基因下调后的诱导多能干细胞移植对大鼠脑缺血损伤治疗作用的影响[J]. 器官移植, 2018, 9(6): 417-423. DOI: 10.3969/j.issn.1674-7445.2018.06.004.

    YU XW, XU H, HUANG ZH, et al. Effect of induced pluripotent stem cell transplantation on treatment of cerebral ischemic injury in rats after down-regulation of HIF-2α gene[J]. Organ Transplant, 2018, 9(6): 417-423. DOI: 10.3969/j.issn.1674-7445.2018.06.004.
    [19] ZHANG T, WU P, BUDBAZAR E, et al. Mitophagy reduces oxidative stress via Keap1 (Kelch-like epichlorohydrin-associated protein 1)/Nrf2 (nuclear factor-E2-related factor 2)/PHB2 (prohibitin 2) pathway after subarachnoid hemorrhage in rats[J]. Stroke, 2019, 50(4): 978-988. DOI: 10.1161/STROKEAHA.118.021590.
    [20] CHEN J, SANBERG PR, LI Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001, 32(11): 2682-2688. DOI: 10.1161/hs1101.098367.
    [21] ROMPOLAS P, MESA KR, GRECO V. Spatial organization within a niche as a determinant of stem-cell fate[J]. Nature, 2013, 502(7472): 513-518. DOI: 10.1038/nature12602.
    [22] 唐敏英, 雷艳, 詹世淮, 等. 三维培养的间充质干细胞球体的生物学特性及应用的研究进展[J/CD]. 中华细胞与干细胞杂志(电子版), 2020, 10(5): 314-318. DOI: 10.3877/cma.j.issn.2095-1221.2020.05.011.

    TANG MY, LEI Y, ZHAN SH, et al. Advances in biological characteristics and applications of mesenchymal stem cells spheroids under three-dimensional culture[J/CD]. Chin J Cell Stem Cell (Electr Edit), 2020, 10(5): 314-318. DOI: 10.3877/cma.j.issn.2095-1221.2020.05.011.
    [23] CHEN X, SHEN WB, YANG P, et al. High glucose inhibits neural stem cell differentiation through oxidative stress and endoplasmic reticulum stress[J]. Stem Cells Dev, 2018, 27(11): 745-755. DOI: 10.1089/scd.2017.0203.
    [24] CHEN F, LIU Y, WONG NK, et al. Oxidative stress in stem cell aging[J]. Cell Transplant, 2017, 26(9): 1483-1495. DOI: 10.1177/0963689717735407.
    [25] TAN DQ, SUDA T. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function[J]. Antioxid Redox Signal, 2018, 29(2): 149-168. DOI: 10.1089/ars.2017.7273.
    [26] SAKAI D, TRAINOR PA. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development[J]. Dev Growth Differ, 2016, 58(7): 577-585. DOI: 10.1111/dgd.12305.
    [27] LIU Q, TAN Y, QU T, et al. Therapeutic mechanism of human neural stem cell-derived extracellular vesicles against hypoxia-reperfusion injury in vitro[J]. Life Sci, 2020, 254: 117772. DOI: 10.1016/j.lfs.2020.117772.
    [28] KASPAR JW, NITURE SK, JAISWAL AK. Nrf2: INrf2 (Keap1) signaling in oxidative stress[J]. Free Radic Biol Med, 2009, 47(9): 1304-1309. DOI: 10.1016/j.freeradbiomed.2009.07.035.
    [29] GUO M, LU H, QIN J, et al. Biochanin a provides neuroprotection against cerebral ischemia/reperfusion injury by Nrf2-mediated inhibition of oxidative stress and inflammation signaling pathway in rats[J]. Med Sci Monit, 2019, 25: 8975-8983. DOI: 10.12659/MSM.918665.
    [30] LU Y, WU S, XIANG B, et al. Curcumin attenuates oxaliplatin-induced liver injury and oxidative stress by activating the Nrf2 pathway[J]. Drug Des Devel Ther, 2020, 14: 73-85. DOI: 10.2147/DDDT.S224318.
  • 加载中
图(5)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  147
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回