留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

葫芦巴碱调节肾移植术后代谢紊乱的应用前景

黎忠大 刘东 王晓 庄锦炀

黎忠大, 刘东, 王晓, 等. 葫芦巴碱调节肾移植术后代谢紊乱的应用前景[J]. 器官移植, 2021, 12(3): 363-368. doi: 10.3969/j.issn.1674-7445.2021.03.017
引用本文: 黎忠大, 刘东, 王晓, 等. 葫芦巴碱调节肾移植术后代谢紊乱的应用前景[J]. 器官移植, 2021, 12(3): 363-368. doi: 10.3969/j.issn.1674-7445.2021.03.017
Li Zhongda, Liu Dong, Wang Xiao, et al. Application prospects of trigonelline in regulating metabolic disorders after renal transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(3): 363-368. doi: 10.3969/j.issn.1674-7445.2021.03.017
Citation: Li Zhongda, Liu Dong, Wang Xiao, et al. Application prospects of trigonelline in regulating metabolic disorders after renal transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(3): 363-368. doi: 10.3969/j.issn.1674-7445.2021.03.017

葫芦巴碱调节肾移植术后代谢紊乱的应用前景

doi: 10.3969/j.issn.1674-7445.2021.03.017
基金项目: 

广东省医学科研基金 A2020371

广州市科技计划项目 201804010421

详细信息
    作者简介:

    黎忠大,男,硕士研究生,研究方向为泌尿外科,Email: LZD13590024576@163.com

    通讯作者:

    刘东,男,博士,主任医师,研究方向为泌尿外科及器官移植,Email: ld177@163.com

  • 中图分类号: R617, R589

Application prospects of trigonelline in regulating metabolic disorders after renal transplantation

More Information
  • 摘要: 肾移植术后易发生糖、脂质等代谢紊乱,导致移植肾功能障碍及长期存活率降低。葫芦巴碱是一种具有多种生物活性的天然生物碱,具有改善糖、脂质等代谢紊乱的作用,可减轻肾脏的炎症反应、氧化应激及细胞凋亡,从而保护肾功能。因此,葫芦巴碱可能是调节肾移植术后代谢紊乱的潜在药物。本文对葫芦巴碱与糖代谢紊乱、脂质代谢紊乱、其他代谢紊乱及葫芦巴碱在肾移植中的应用前景进行综述,旨在为改善肾移植术后代谢紊乱、提高肾移植受者及移植肾的长期存活率提供参考。

     

  • [1] CHOI M, MUKHERJEE S, YUN JW. Trigonelline induces browning in 3T3-L1 white adipocytes[J]. Phytother Res, 2021, 35(2): 1113-1124. DOI: 10.1002/ptr.6892.
    [2] SHEWEITA SA, ELHADY SA, HAMMODA HM. Trigonella stellata reduced the deleterious effects of diabetes mellitus through alleviation of oxidative stress, antioxidant- and drug-metabolizing enzymes activities[J]. J Ethnopharmacol, 2020, 256: 112821. DOI: 10.1016/j.jep.2020.112821.
    [3] NUGRAHINI AD, ISHIDA M, NAKAGAWA T, et al. Trigonelline: an alkaloid with anti-degranulation properties[J]. Mol Immunol, 2020, 118: 201-209. DOI: 10.1016/j.molimm.2019.12.020.
    [4] NISHINA Y, SATO K, SHIGA K. Proton release from flavoprotein D-amino acid oxidase on complexation with the zwitterionic ligand, trigonelline[J]. J Biochem, 1990, 107(5): 726-731. DOI: 10.1093/oxfordjournals.jbchem.a123116.
    [5] ABDO S, SHI Y, OTOUKESH A, et al. Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice[J]. Diabetes, 2014, 63(10): 3483-3496. DOI: 10.2337/db13-1830.
    [6] KANDHARE AD, THAKURDESAI PA, WANGIKAR P, et al. A systematic literature review of fenugreek seed toxicity by using ToxRTool: evidence from preclinical and clinical studies[J]. Heliyon, 2019, 5(4): e01536. DOI: 10.1016/j.heliyon.2019.e01536.
    [7] RAO AS, HEGDE S, PACIORETTY LM, et al. Nigella sativa and trigonella foenum-graecum supplemented chapatis safely improve HbA1c, body weight, waist circumference, blood lipids, and fatty liver in overweight and diabetic subjects: a twelve-week safety and efficacy study[J]. J Med Food, 2020, 23(9): 905-919. DOI: 10.1089/jmf.2020.0075.
    [8] MOHAMMED A, ISLAM MS. Spice-derived bioactive ingredients: potential agents or food adjuvant in the management of diabetes mellitus[J]. Front Pharmacol, 2018, 9: 893. DOI: 10.3389/fphar.2018.00893.
    [9] MOHAMADI N, SHARIFIFAR F, POURNAMDARI M, et al. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid[J]. J Diet Suppl, 2018, 15(2): 207-222. DOI: 10.1080/19390211.2017.1329244.
    [10] RIEDEL A, LANG R, ROHM B, et al. Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression[J]. J Nutr Biochem, 2014, 25(7): 750-757. DOI: 10.1016/j.jnutbio.2014.03.002.
    [11] SHARMA L, LONE NA, KNOTT RM, et al. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy[J]. Food Chem Toxicol, 2018, 121: 283-296. DOI: 10.1016/j.fct.2018.09.011.
    [12] PEERAPEN P, THONGBOONKERD V. Protective roles of trigonelline against oxalate-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells: an in vitro study[J]. Food Chem Toxicol, 2020, 135: 110915. DOI: 10.1016/j.fct.2019.110915.
    [13] SHAO X, CHEN C, MIAO C, et al. Expression analysis of microRNAs and their target genes during experimental diabetic renal lesions in rats administered with ginsenoside Rb1 and trigonelline[J]. Pharmazie, 2019, 74(8): 492-498. DOI: 10.1691/ph.2019.8903.
    [14] COHEN E, KORAH M, CALLENDER G, et al. Metabolic disorders with kidney transplant[J]. Clin J Am Soc Nephrol, 2020, 15(5): 732-742. DOI: 10.2215/CJN.09310819.
    [15] PIOTTI G, GANDOLFINI I, PALMISANO A, et al. Metabolic risk profile in kidney transplant candidates and recipients[J]. Nephrol Dial Transplant, 2019, 34(3): 388-400. DOI: 10.1093/ndt/gfy151.
    [16] COHEN-BUCAY A, GORDON CE, FRANCIS JM. Non-immunological complications following kidney transplantation[J]. F1000Res, 2019, 8: F1000 Faculty Rev-194. DOI: 10.12688/f1000research.16627.1.
    [17] CHRISTODOULOU MI, TCHOUMTCHOUA J, SKALTSOUNIS AL, et al. Natural alkaloids intervening the insulin pathway: new hopes for anti-diabetic agents?[J]. Curr Med Chem, 2019, 26(32): 5982-6015. DOI: 10.2174/0929867325666180430152618.
    [18] COSTA MC, LIMA TFO, ARCARO CA, et al. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity[J]. J Nutr Biochem, 2020, 76: 108303. DOI: 10.1016/j.jnutbio.2019.108303.
    [19] DELGADO P, DIAZ JM, SILVA I, et al. Unmasking glucose metabolism alterations in stable renal transplant recipients: a multicenter study[J]. Clin J Am Soc Nephrol, 2008, 3(3): 808-813. DOI: 10.2215/CJN.04921107.
    [20] JENSSEN T, HARTMANN A. Emerging treatments for post-transplantation diabetes mellitus[J]. Nat Rev Nephrol, 2015, 11(8): 465-477. DOI: 10.1038/nrneph.2015.59.
    [21] CONTE C, SECCHI A. Post-transplantation diabetes in kidney transplant recipients: an update on management and prevention[J]. Acta Diabetol, 2018, 55(8): 763-779. DOI: 10.1007/s00592-018-1137-8.
    [22] TRIÑANES J, RODRIGUEZ-RODRIGUEZ AE, BRITO-CASILLAS Y, et al. Deciphering tacrolimus-induced toxicity in pancreatic β cells[J]. Am J Transplant, 2017, 17(11): 2829-2840. DOI: 10.1111/ajt.14323.
    [23] COLE EH, JOHNSTON O, ROSE CL, et al. Impact of acute rejection and new-onset diabetes on long-term transplant graft and patient survival[J]. Clin J Am Soc Nephrol, 2008, 3(3): 814-821. DOI: 10.2215/CJN.04681107.
    [24] KLANGJAREONCHAI T, EGUCHI N, TANTISATTAMO E, et al. Current pharmacological intervention and medical management for diabetic kidney transplant recipients[J]. Pharmaceutics, 2021, 13(3): 413. DOI: 10. 3390/pharmaceutics13030413.
    [25] LIU L, DU X, ZHANG Z, et al. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice[J]. Eur J Pharmacol, 2018, 836: 115-121. DOI: 10.1016/j.ejphar.2018.08.025.
    [26] SPATOLA L, FERRARO PM, GAMBARO G, et al. Metabolic syndrome and uric acid nephrolithiasis: insulin resistance in focus[J]. Metabolism, 2018, 83: 225-233. DOI: 10.1016/j.metabol.2018.02.008.
    [27] OTERDOOM LH, DE VRIES AP, GANSEVOORT RT, et al. Determinants of insulin resistance in renal transplant recipients[J]. Transplantation, 2007, 83(1): 29-35. DOI: 10.1097/01.tp.0000245844.27683.48.
    [28] SARAFIDIS PA, RUILOPE LM. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications[J]. Am J Nephrol, 2006, 26(3): 232-244. DOI: 10.1159/000093632.
    [29] LI Y, LI Q, WANG C, et al. Trigonelline reduced diabetic nephropathy and insulin resistance in type 2 diabetic rats through peroxisome proliferator-activated receptor-γ[J]. Exp Ther Med, 2019, 18(2): 1331-1337. DOI: 10.3892/etm.2019.7698.
    [30] OHASHI N, ISOBE S, MATSUYAMA T, et al. The intrarenal renin-angiotensin system is activated immediately after kidney donation in kidney transplant donors[J]. Intern Med, 2019, 58(5): 643-648. DOI: 10.2169/internalmedicine.1756-18.
    [31] FU H, DESVERGNE B, FERRARI S, et al. Impaired musculoskeletal response to age and exercise in PPARβ(-/-) diabetic mice[J]. Endocrinology, 2014, 155(12): 4686-4696. DOI: 10.1210/en.2014-1585.
    [32] GANDHI GR, JOTHI G, ANTONY PJ, et al. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway[J]. Eur J Pharmacol, 2014, 745: 201-216. DOI: 10.1016/j.ejphar.2014.10.044.
    [33] SURESHA BS, SRINIVASAN K. Fungal metabolite nigerloxin ameliorates diabetic nephropathy and gentamicin-induced renal oxidative stress in experimental rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(9): 849-859. DOI: 10.1007/s00210-014-1001-5.
    [34] LIGHTNER AL, LAU J, OBAYASHI P, et al. Potential nutritional conflicts in bariatric and renal transplant patients[J]. Obes Surg, 2011, 21(12): 1965-1970. DOI: 10.1007/s11695-011-0423-0.
    [35] ILAVENIL S, ARASU MV, LEE JC, et al. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells[J]. Phytomedicine, 2014, 21(5): 758-765. DOI: 10.1016/j.phymed.2013.11.007.
    [36] ANWAR S, BHANDARI U, PANDA BP, et al. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk[J]. J Pharm Biomed Anal, 2018, 159: 100-112. DOI: 10.1016/j.jpba.2018.06.027.
    [37] ROMANO KA, MARTINEZ-DEL CAMPO A, KASAHARA K, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption[J]. Cell Host Microbe, 2017, 22(3): 279-290. DOI: 10.1016/j.chom.2017.07.021.
    [38] SANAJOU D, GHORBANI HAGHJO A, ARGANI H, et al. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions[J]. Eur J Pharmacol, 2018, 833: 158-164. DOI: 10.1016/j.ejphar.2018.06.001.
    [39] ELGSTOEN KB, JOHNSEN LF, WOLDSETH B, et al. Plasma oxalate following kidney transplantation in patients without primary hyperoxaluria[J]. Nephrol Dial Transplant, 2010, 25(7): 2341-2345. DOI: 10.1093/ndt/gfq065.
    [40] HOPPE B, BECK BB, MILLINER DS. The primary hyperoxalurias[J]. Kidney Int, 2009, 75(12): 1264-1271. DOI: 10.1038/ki.2009.32.
    [41] PALSSON R, CHANDRAKER AK, CURHAN GC, et al. The association of calcium oxalate deposition in kidney allografts with graft and patient survival[J]. Nephrol Dial Transplant, 2020, 35(5): 888-894. DOI: 10.1093/ndt/gfy271.
    [42] BILAR JM, FUCUTA PDS, FELDNER AC, et al. Iron overload in renal transplant patients: the role of hepcidin and erythropoietin[J]. Transplant Proc, 2020, 52(1): 169-174. DOI: 10.1016/j.transproceed.2019.10.020.
    [43] KOPPENOL WH. The centennial of the Fenton reaction[J]. Free Radic Biol Med, 1993, 15(6): 645-651. DOI: 10.1016/0891-5849(93)90168-t.
    [44] VAN RAAIJ SEG, MASEREEUW R, SWINKELS DW, et al. Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells[J]. Toxicol Lett, 2018, 295: 179-186. DOI: 10.1016/j.toxlet.2018.06.1218.
    [45] KATSAROU A, PANTOPOULOS K. Hepcidin therapeutics[J]. Pharmaceuticals (Basel), 2018, 11(4): 127. DOI: 10.3390/ph11040127.
    [46] SCHAEFER B, EFFENBERGER M, ZOLLER H. Iron metabolism in transplantation[J]. Transpl Int, 2014, 27(11): 1109-1117. DOI: 10.1111/tri.12374.
    [47] AROSIO P, INGRASSIA R, CAVADINI P. Ferritins: a family of molecules for iron storage, antioxidation and more[J]. Biochim Biophys Acta, 2009, 1790(7): 589-599. DOI: 10.1016/j.bbagen.2008.09.004.
    [48] THIJSSEN DHJ, BRUNO RM, VAN MIL ACCM, et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans[J]. Eur Heart J, 2019, 40(30): 2534-2547. DOI: 10.1093/eurheartj/ehz350.
    [49] JUNARTA J, HOJS N, RAMPHUL R, et al. Progression of endothelial dysfunction, atherosclerosis, and arterial stiffness in stable kidney transplant patients: a pilot study[J]. BMC Cardiovasc Disord, 2020, 20(1): 6. DOI: 10.1186/s12872-019-01309-y.
    [50] SASAKI M, NONOSHITA Y, KAJIYA T, et al. Characteristic analysis of trigonelline contained in raphanus sativus cv. Sakurajima daikon and results from the first trial examining its vasodilator properties in humans[J]. Nutrients, 2020, 12(6): 1872. DOI: 10.3390/nu12061872.
    [51] SZYMCZAK M, KLUZ J, MAŁECKI R, et al. Effect of immunosuppressive treatment on carotid atherosclerosis in renal transplant recipients[J]. Transplant Proc, 2016, 48(5): 1626-1629. DOI: 10.1016/j.transproceed.2016.03.005.
    [52] KURODA R, KAZUMURA K, USHIKATA M, et al. Elucidating the improvement in vascular endothelial function from Sakurajima daikon and its mechanism of action: a comparative study with raphanus sativus[J]. J Agric Food Chem, 2018, 66(33): 8714-8721. DOI: 10.1021/acs.jafc.8b01750.
    [53] FAHR A. Cyclosporin clinical pharmacokinetics[J]. Clin Pharmacokinet, 1993, 24(6): 472-495. DOI: 10.2165/ 00003088-199324060-00004.
    [54] AL-JENOOBI FI, ALAM MA, ALKHARFY KM, et al. Pharmacokinetic interaction studies of fenugreek with CYP3A substrates cyclosporine and carbamazepine[J]. Eur J Drug Metab Pharmacokinet, 2014, 39(2): 147-153. DOI: 10.1007/s13318-013-0149-6.
    [55] MIGLIOZZI DR, ASAL NJ. Clinical controversy in transplantation: tacrolimus versus cyclosporine in statin drug interactions[J]. Ann Pharmacother, 2020, 54(2): 171-177. DOI: 10.1177/1060028019871891.
    [56] ECKARDT KU, KASISKE BL. Foreword[J]. Kidney Int, 2009, 76113: S1-S2. DOI: 10.1038/ki.2009.188.
    [57] RATHI A, ISHAQ M, NAJMI AK, et al. Trigonelline demonstrated ameliorative effects in dexamethasone induced osteoporotic rats[J]. Drug Res (Stuttg), 2020, 70(6): 257-264. DOI: 10.1055/a-1147-5724.
  • 加载中
图(1)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  160
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-21
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回